Event-based networked predictive control for networked control systems subject to two-channel delays
This paper is concerned with a new combination of the event-triggered scheme and the networked predictive control technique for the networked control systems (NCSs) subject to time delays in both sensor-to-controller and controller-to-actuator channels. Firstly, the output-based Luenberger observer...
Saved in:
Published in | Information sciences Vol. 524; pp. 136 - 147 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.07.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper is concerned with a new combination of the event-triggered scheme and the networked predictive control technique for the networked control systems (NCSs) subject to time delays in both sensor-to-controller and controller-to-actuator channels. Firstly, the output-based Luenberger observer is designed for the considered NCSs. Secondly, in order to stabilize the NCSs, the model-based networked predictive control technique is proposed to compensate for the network-induced two-channel delays. Next, two different analysis frameworks are presented, and sufficient conditions for the asymptotic stability of the resulting closed-loop systems are obtained, respectively. Particularly, the proposed event-triggered scheme based on the measured outputs and the state predictions have considerably reduced the times of data transmission over the bandwidth-limited communication networks. Finally, an example of the buck DC-DC converter system is provided to demonstrate the effectiveness of the developed method. |
---|---|
ISSN: | 0020-0255 1872-6291 |
DOI: | 10.1016/j.ins.2020.03.031 |