The (2+1)-Dimensional Chiral Nonlinear Schrödinger Equation: Extraction of Soliton Solutions and Sensitivity Analysis

The objective of this manuscript is to investigate the (2+1)-dimensional Chiral nonlinear Schrödinger equation (CNLSE). We employ the traveling wave transformation to convert the nonlinear partial differential equation (NLPDE) into the nonlinear ordinary differential equation (NLODE). Utilizing the...

Full description

Saved in:
Bibliographic Details
Published inAxioms Vol. 14; no. 6; p. 422
Main Authors Hussain, Ejaz, Arafat, Yasir, Malik, Sandeep, Alshammari, Fehaid Salem
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 29.05.2025
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The objective of this manuscript is to investigate the (2+1)-dimensional Chiral nonlinear Schrödinger equation (CNLSE). We employ the traveling wave transformation to convert the nonlinear partial differential equation (NLPDE) into the nonlinear ordinary differential equation (NLODE). Utilizing the two new vital techniques to derive the solitary wave solutions, the generalized Arnous method and the Riccati equation method, we obtained various types of waves like bright solitons, dark solitons, and periodic wave solutions. Sensitivity analysis is also discussed using different initial conditions. Sensitivity analysis refers to the study of how the solutions of the equations respond to changes in the parameters or initial conditions. It involves assessing the impact of variations in these factors on the behavior and properties of the solutions. To better comprehend the physical consequences of these solutions, we showcase them through different visual depictions like 3D, 2D, and contour plots. The findings of this study are original and hold significant value for the future exploration of the equation, offering valuable directions for researchers to deepen knowledge on the subject.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2075-1680
2075-1680
DOI:10.3390/axioms14060422