Thermoelastic Ultrasonic Actuator With Piezoresistive Sensing and Integrated Through-Silicon Vias

This paper presents technology development toward the goal of a micromachined acoustic proximity sensor for real-time cavity monitoring of underwater high-speed super-cavitating vehicles. Low-resistance polysilicon-based through-silicon vias (TSVs) have been integrated with the device to enable back...

Full description

Saved in:
Bibliographic Details
Published inJournal of microelectromechanical systems Vol. 21; no. 2; pp. 350 - 358
Main Authors Griffin, B. A., Chandrasekaran, V., Sheplak, M.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.04.2012
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper presents technology development toward the goal of a micromachined acoustic proximity sensor for real-time cavity monitoring of underwater high-speed super-cavitating vehicles. Low-resistance polysilicon-based through-silicon vias (TSVs) have been integrated with the device to enable backside contacts for drive and sense circuitry. The sensor and vias were fabricated in a complementary-metal-oxide-semiconductor compatible process using deep reactive ion etching, producing a 1-mm-diameter composite diaphragm and 20-μm-diameter high-aspect-ratio TSVs on a silicon-on-insulator wafer. The diaphragm incorporates a central resistive heater for thermoelastic actuation and diffused piezoresistors for sensing acoustic pressure perturbations. Electrical, mechanical, and acoustic characterizations of the device indicate a transmitter source level of 50 dB (ref 20 μPa) at an operating frequency of 60 kHz, a flat-bandwidth receiving sensitivity of 0.98 μV/(V · Pa), a flat frequency response over the measured range of 1-20 kHz, a linear response from 60 to 140 dB, negligible leakage current for the junction-isolated diffused piezoresistors (<; 14 pA at -10 V), low interconnect resistance of 14 Ω, and a minimum detectable pressure of 31.9 dB for a 1-Hz bin centered at 60 kHz, at a bias of 9 V.
ISSN:1057-7157
1941-0158
DOI:10.1109/JMEMS.2011.2178114