Physics-enhanced neural network for phase retrieval from two diffraction patterns
In this work, we propose a physics-enhanced two-to-one Y-neural network (two inputs and one output) for phase retrieval of complex wavefronts from two diffraction patterns. The learnable parameters of the Y-net are optimized by minimizing a hybrid loss function, which evaluates the root-mean-square...
Saved in:
Published in | Optics express Vol. 30; no. 18; pp. 32680 - 32692 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
29.08.2022
|
Online Access | Get full text |
Cover
Loading…
Summary: | In this work, we propose a physics-enhanced two-to-one Y-neural network (two inputs and one output) for phase retrieval of complex wavefronts from two diffraction patterns. The learnable parameters of the Y-net are optimized by minimizing a hybrid loss function, which evaluates the root-mean-square error and normalized Pearson correlated coefficient on the two diffraction planes. An angular spectrum method network is designed for self-supervised training on the Y-net. Amplitudes and phases of wavefronts diffracted by a USAF-1951 resolution target, a phase grating of 200 lp/mm, and a skeletal muscle cell were retrieved using a Y-net with 100 learning iterations. Fast reconstructions could be realized without constraints or a priori knowledge of the samples. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.469080 |