Large-scale and facile fabrication of phenyl-containing silicone foam materials with lightweight, wide-temperature flexibility and tunable pore structure for exceptional thermal insulation

•Introducing phenyl groups onto Si–O–Si chains can tailor the foaming and cross-linking match.•The lowest density of the optimized PhSiRF material is as light as ∼100 mg/cm3.•The pore structure and morphology in the PhSiRF materials can be easily achieved.•The PhSiRF presents good wide-temperature f...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering journal (Lausanne, Switzerland : 1996) Vol. 492; p. 152183
Main Authors Wu, Yu-Yue, Wu, Zhi-Hao, Chen, Zuan-Yu, Peng, Li-Dong, Guan, Zi-Qi, Li, Yang, Cao, Cheng-Fei, Zhang, Guo-Dong, Gao, Jie-Feng, Song, Pingan, Shi, Yong-Qian, Tang, Long-Cheng
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Introducing phenyl groups onto Si–O–Si chains can tailor the foaming and cross-linking match.•The lowest density of the optimized PhSiRF material is as light as ∼100 mg/cm3.•The pore structure and morphology in the PhSiRF materials can be easily achieved.•The PhSiRF presents good wide-temperature flexibility and exceptional thermal insulation. Silicone foam materials with unique inorganic/organic molecular networks and porous structures are widely used in many emerging fields from aerospace to new energy fields. However, current silicone foam materials still show some limitations, such as the relatively high-density values of >200 mg cm−3, complex fabricating process and difficulty in tailoring pore structure. Herein, we report a large-scale and facile fabricating strategy to prepare phenyl-containing silicone foam materials (PhSiRF) with ultra-lightweight feature, tunable pore structure, and excellent wide-temperature mechanical flexibility. Interestingly, the presence of phenyl groups onto the Si–O–Si backbone tailors the chemical foaming rate probably due to the steric hindrance effect, thus producing tunable pore size distributions in the range of 180–500 μm. Typically, the PhSiRF with 50 % phenyl groups not only shows a very low density of ∼100 mg cm−3, superior to previous silicone foams and composites, but also exhibits wide-temperature flexibility (stable compressive strain of 80 % from −90 to 210 °C) and excellent thermal insulation performance, which outperforms those of conventional polymer foams including polyurethane, polyethylene and melamine foams. Based on the structure observation and theory analysis, the influence of different pore morphological structures on the thermal insulation performance is discussed and demonstrated. Clearly, this work provides a new yet simple method for developing high-performance silicone rubber foam materials for promising thermal insulation applications.
AbstractList •Introducing phenyl groups onto Si–O–Si chains can tailor the foaming and cross-linking match.•The lowest density of the optimized PhSiRF material is as light as ∼100 mg/cm3.•The pore structure and morphology in the PhSiRF materials can be easily achieved.•The PhSiRF presents good wide-temperature flexibility and exceptional thermal insulation. Silicone foam materials with unique inorganic/organic molecular networks and porous structures are widely used in many emerging fields from aerospace to new energy fields. However, current silicone foam materials still show some limitations, such as the relatively high-density values of >200 mg cm−3, complex fabricating process and difficulty in tailoring pore structure. Herein, we report a large-scale and facile fabricating strategy to prepare phenyl-containing silicone foam materials (PhSiRF) with ultra-lightweight feature, tunable pore structure, and excellent wide-temperature mechanical flexibility. Interestingly, the presence of phenyl groups onto the Si–O–Si backbone tailors the chemical foaming rate probably due to the steric hindrance effect, thus producing tunable pore size distributions in the range of 180–500 μm. Typically, the PhSiRF with 50 % phenyl groups not only shows a very low density of ∼100 mg cm−3, superior to previous silicone foams and composites, but also exhibits wide-temperature flexibility (stable compressive strain of 80 % from −90 to 210 °C) and excellent thermal insulation performance, which outperforms those of conventional polymer foams including polyurethane, polyethylene and melamine foams. Based on the structure observation and theory analysis, the influence of different pore morphological structures on the thermal insulation performance is discussed and demonstrated. Clearly, this work provides a new yet simple method for developing high-performance silicone rubber foam materials for promising thermal insulation applications.
ArticleNumber 152183
Author Peng, Li-Dong
Shi, Yong-Qian
Cao, Cheng-Fei
Chen, Zuan-Yu
Wu, Yu-Yue
Guan, Zi-Qi
Tang, Long-Cheng
Wu, Zhi-Hao
Zhang, Guo-Dong
Li, Yang
Song, Pingan
Gao, Jie-Feng
Author_xml – sequence: 1
  givenname: Yu-Yue
  surname: Wu
  fullname: Wu, Yu-Yue
  organization: Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
– sequence: 2
  givenname: Zhi-Hao
  orcidid: 0009-0000-7656-6930
  surname: Wu
  fullname: Wu, Zhi-Hao
  organization: Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
– sequence: 3
  givenname: Zuan-Yu
  surname: Chen
  fullname: Chen, Zuan-Yu
  organization: Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
– sequence: 4
  givenname: Li-Dong
  surname: Peng
  fullname: Peng, Li-Dong
  organization: Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
– sequence: 5
  givenname: Zi-Qi
  orcidid: 0009-0000-1496-9144
  surname: Guan
  fullname: Guan, Zi-Qi
  organization: Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
– sequence: 6
  givenname: Yang
  surname: Li
  fullname: Li, Yang
  email: liyang666@gachon.ac.kr
  organization: Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
– sequence: 7
  givenname: Cheng-Fei
  surname: Cao
  fullname: Cao, Cheng-Fei
  organization: Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
– sequence: 8
  givenname: Guo-Dong
  surname: Zhang
  fullname: Zhang, Guo-Dong
  email: zhangguodong@hznu.edu.cn
  organization: Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
– sequence: 9
  givenname: Jie-Feng
  orcidid: 0000-0002-6038-9770
  surname: Gao
  fullname: Gao, Jie-Feng
  organization: College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
– sequence: 10
  givenname: Pingan
  orcidid: 0000-0003-1082-652X
  surname: Song
  fullname: Song, Pingan
  organization: Centre for Future Materials, University of Southern Queensland, Springfield Campus, QLD 4300, Australia
– sequence: 11
  givenname: Yong-Qian
  orcidid: 0000-0002-5646-4627
  surname: Shi
  fullname: Shi, Yong-Qian
  organization: College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
– sequence: 12
  givenname: Long-Cheng
  orcidid: 0000-0002-2382-8850
  surname: Tang
  fullname: Tang, Long-Cheng
  email: lctang@hznu.edu.cn
  organization: Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
BookMark eNp9kMtu2zAQRbVIgbz6AdnxAyKXpKwXsiqCvgAD3aRrYTQc2mNQlEDSTfxv_bjSdlddZMPhY87cy3tbXPnZU1E8KLlSUjWf9iuk_UpLvV6pWquuuipuVNXVZdev2-viNsa9lLLpVX9T_NlA2FIZERwJ8EZYQM5bC2NghMSzF7MVy4780ZU4-wTs2W9FZMf5mDtnmMQEiQKDi-KV00443u7SK53Wx3xjqEw0LRQgHUImHL3xmPl0PEumg4cxay5zfowpHPDSNgdBb0jLyQQ4kXYUplzZx4M7O7svPtisSR__1bvi19cvL8_fy83Pbz-eP29K1H2byqpCJfvWYGuloa4HLYmsbduuGsFY7EjXjUHTNo3So6oldqruYV0h6q7RUN0V6jIXwxxjIDssgScIx0HJ4RT5sB9y5MMp8uESeWba_xjkdHadArB7l3y6kJS_9JspDBGZPJLhQJgGM_M79F9e_6aU
CitedBy_id crossref_primary_10_1088_2631_6331_ad8ea7
crossref_primary_10_58224_2618_7183_2024_7_3_4
crossref_primary_10_1002_marc_202400698
crossref_primary_10_1007_s11804_025_00648_x
crossref_primary_10_1007_s13399_025_06493_w
crossref_primary_10_1016_j_surfin_2024_105607
crossref_primary_10_1021_acsapm_4c02747
crossref_primary_10_1002_smll_202406102
crossref_primary_10_1016_j_scib_2025_01_005
crossref_primary_10_1021_acsaelm_4c01498
crossref_primary_10_1021_acsapm_4c02511
crossref_primary_10_1111_ijac_15085
crossref_primary_10_1016_j_ijbiomac_2025_140324
crossref_primary_10_3390_polym16172442
Cites_doi 10.1021/acsnano.2c08368
10.1007/s10965-017-1240-5
10.1021/acsapm.0c00071
10.1016/j.mattod.2022.02.007
10.1039/C7TA04577H
10.1039/C6RA26701G
10.3390/polym14081628
10.1002/adma.201401364
10.1016/j.cej.2021.131615
10.1039/C9TA09372A
10.1016/j.coco.2022.101402
10.1002/adfm.201900469
10.1002/pi.6292
10.1016/j.compscitech.2019.05.027
10.1016/j.compscitech.2021.108663
10.1002/adma.202001839
10.1002/adma.201801001
10.1021/acsami.1c03272
10.1016/j.ijheatmasstransfer.2019.03.106
10.1016/j.cej.2023.142518
10.1016/j.jmst.2021.11.012
10.1039/C7RA02439H
10.1016/j.mser.2021.100608
10.1016/j.jmst.2021.11.048
10.1039/b805943h
10.1002/adma.201700898
10.1039/C8NJ02361A
10.3390/polym14010082
10.1016/j.jcis.2023.05.119
10.1021/om980190a
10.1002/anie.200301742
10.1016/j.compositesb.2022.110290
10.1007/BF00363413
10.1021/acsami.7b00847
10.1016/j.eurpolymj.2008.06.033
10.1016/j.compositesb.2021.109243
10.1002/app.47679
10.1039/D3PY00096F
10.3390/polym14091898
10.3390/polym15040953
10.1016/j.cej.2020.126620
10.1126/science.255.5047.971
10.1016/j.mser.2022.100690
10.1016/j.nanoen.2021.106502
10.1016/j.cej.2020.124724
10.1039/C9NJ00782B
10.1002/adfm.202304927
10.1002/adma.201702675
10.1016/j.nanoen.2022.107789
10.1021/acsami.1c05222
10.1016/j.matdes.2012.08.070
10.1039/C8RA00222C
10.1021/acsnano.9b06283
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cej.2024.152183
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_cej_2024_152183
S1385894724036702
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABUDA
ACDAQ
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSJ
SSZ
T5K
~G-
AATTM
AAYWO
AAYXX
ABXDB
ACVFH
ADCNI
AEIPS
AEUPX
AFFNX
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BKOMP
BNPGV
CITATION
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
SSH
ZY4
ID FETCH-LOGICAL-c297t-33c1097dc7f0de89a20eeff7783badfc8e256dcd76612b150c8159a43cc2862a3
IEDL.DBID .~1
ISSN 1385-8947
IngestDate Tue Jul 01 02:12:05 EDT 2025
Thu Apr 24 23:11:14 EDT 2025
Sat Oct 19 15:54:48 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Silicone foam material
Phenyl group
Wide-temperature flexibility
Tunable pore structure
Thermal insulation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-33c1097dc7f0de89a20eeff7783badfc8e256dcd76612b150c8159a43cc2862a3
ORCID 0009-0000-1496-9144
0000-0002-6038-9770
0000-0002-2382-8850
0000-0003-1082-652X
0009-0000-7656-6930
0000-0002-5646-4627
ParticipantIDs crossref_primary_10_1016_j_cej_2024_152183
crossref_citationtrail_10_1016_j_cej_2024_152183
elsevier_sciencedirect_doi_10_1016_j_cej_2024_152183
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-15
PublicationDateYYYYMMDD 2024-07-15
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-15
  day: 15
PublicationDecade 2020
PublicationTitle Chemical engineering journal (Lausanne, Switzerland : 1996)
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Verdejo, Saiz-Arroyo, Carretero-Gonzalez, Barroso-Bujans, Rodriguez-Perez, Lopez-Manchado (b0200) 2008; 44
Du, Yin, Huang, Ge (b0210) 2021; 71
R. Verdejo, F. Barroso-Bujans, M.A. Rodriguez-Perez, A. Jose, M. Arroyo, M.A.J.J.o.M.C. Lopez-Manchado, Carbon nanotubes provide self-extinguishing grade to silicone-based foams, J. Mater. Chem. 18(33) (2008) 3933-3939. https://doi.org/10.1039/B805943H.
Mao, Yu, Cao, Gong, Zhang, Zhao, Song, Gao, Tang (b0020) 2022; 427
Yan, Cao, Xue, Feng, Zhang, Wang (b0190) 2020; 2
Aakyiir, Tanner, Yap, Rastin, Tung, Losic, Meng, Ma (b0245) 2022; 117
Chen, Chen, Mao, Wu, Yang, Gong, Zhao, Cao, Song, Gao, Zhang, Shi, Cao, Tang (b0105) 2023
Deng, Kang, Xiao, Shu, Wang, Laiwang, Liu (b0205) 2019; 137
Li, Jia, Liu, Fang, Zhu, Li, Schaefer, Li, Zhang, Feng, Hussain, Xi, Wang, Lin, Wei, Wu (b0250) 2022; 54
Li, He, Zeng, Jiang, Wu, Gong, Li, Bae, Wang, Tang (b0120) 2022; 103
Collishaw, Evans (b0265) 1994; 29
Luo, Huang, Liu, Chen, Wong, Zhao (b0095) 2017; 29
Qu, Guo, Pan, Wu, Guo, Feng, Kong, Zhang, Zhang, Zhao, Gong, Gao, Liu, Mao, Tang (b0130) 2022; 26
Guo, Wang, Qu, Yang, Qin, Li, Zhang, Gao, Shi, Song, Tang (b0080) 2023
Wu, Zhang, Ladani, Ravindran, Mouritz, Kinloch, Wang (b0220) 2017; 9
Hu, Yuan, Yan, Zhou, Lei (b0055) 2017; 24
Yu, Song, Yang, Wen, Zhao, Zhao, Zhang (b0115) 2023
Davoodi, Montazerian, Haghniaz, Rashidi, Ahadian, Sheikhi, Chen, Khademhosseini, Milani, Hoorfar, Toyserkani (b0225) 2020; 14
Wu, Fu, Zeng, Chen, Pan, Lin, Xu, Chen, Sun, Hai (b0275) 2023; 463
Brunner (b0180) 2004; 43
Shigeyoshi Sakaki, Sugimoto (b0185) 1998; 17
Dai, Gu, Zhao, Zhang, Gao, Wu, Shen, Zhang, Kong, Li, Gong, Zhang, Tang (b0170) 2021; 225
Yu, Mao, Li, Xia, Cao, Zhao, Zhang, Zheng, Gao, Tang (b0025) 2021; 405
Wang, Lai, Li, Jiang, Gao, Zeng (b0035) 2021; 13
Chen, Zhao, Ren, Rong, Cao, Advincula (b0070) 2019; 29
Hu, Yu, Zheng, Hu, Cao, Cao, Sun, Gao, Shi, Song, Tang (b0050) 2023; 647
Qiu, Bi, Hu, Wu, Li, Sun (b0215) 2017; 7
Sintas, Wolfgang, Long (b0060) 2023; 14
Li, Cao, Li, Huang, Mao, Zhang, Wang, Guo, Gong, Zhang, Zhao, Guan, Wan, Tang, Mai (b0135) 2019; 7
Jung, Kim, Kim, Choi, Lee, Park, Hyeon, Kim (b0100) 2014; 26
Zhang, Wu, Xia, Qu, Pan, Hu, Zhao, Cao, Chen, Yuan, Gao, Mai, Tang (b0160) 2021; 13
Xu, Zhang, Qu, Dai, Li, Sui, Zhang (b0150) 2019; 43
Lu, Arduini-Schuster, Kuhn, Nilsson, Fricke, Pekala (b0260) 1992; 255
Peyrton, Avérous (b0065) 2021; 145
Zhang, Qu, Wang, Xu, Zhang (b0235) 2018; 8
Cao, Yu, Huang, Feng, Lv, Sun, Tang, Feng, Song, Wang (b0045) 2022; 16
Yang, Liao, Wang, Chen, Song, Tang, Guo, Liu, Li (b0110) 2021; 206
Wang, Hou, Ma, Li, Geng, Zhang, Li (b0255) 2022; 14
Yang, Liao, Li, He, Zhang, Tang, Wang, Li (b0230) 2019; 181
Shen, Liang, Lin, Lin, Yu, Wang (b0015) 2021; 14
Li, Ding, Ha, Shi, Peng, Zhang, Ellison, Yu (b0090) 2017; 29
Zhang, Chen, Tang, Li, Ma, Zhang, Boukherroub, Cao, Gong, Song, Cao, Tang (b0005) 2022; 114
Hu, Wu, Sun (b0285) 2019; 31
Lv, Cao, Qu, Zhang, Zhao, Cao, Song, Tang (b0040) 2022; 150
Apostolopoulou-Kalkavoura, Munier, Bergstrom (b0280) 2021; 33
Huang, Zang, Zhang, Guan, Li, Zhao, Tang (b0165) 2017; 7
Wu, Feng, Qu, Gong, Cao, Zhang, Shi, Gao, Song, Tang (b0075) 2023; 37
Cao, Yu, Chen, Qu, Li, Shi, Ma, Sun, Pan, Tang, Song, Wang (b0030) 2022; 14
Guo, Wang, Cao, Qu, Lv, Zhang, Gong, Song, Gao, Mai, Tang (b0175) 2022; 247
Guo, Tang (b0270) 2019; 137
Zhu, Handschuh-Wang, Zhou (b0085) 2017; 5
Cao, Wang, Zhang, Guo, Li, Xia, Zhang, Zhao, Chen, Wang, Gao, Song, Tang (b0140) 2020; 393
J. Gao, J. Wang, H. Xu, C. Wu, Preparation and properties of hollow glass bead filled silicone rubber foams with low thermal conductivity, Mater. Design (1980-2015) 46 (2013) 491–496. https://doi.org/10.1016/j.matdes.2012.08.070.
Xu, Zhang, Li, Dai, Qu, Sui, Gu, Dou (b0145) 2018; 42
Shiu, Huang, Yang, Chen, Lou, Lin (b0010) 2023; 15
Hu, Xia, Pan, Chen, Qu, Chen, Zhang, Zhao, Gong, Xue, Tang (b0155) 2022; 14
Li, Yu, Guo, Guo, Li, Gong, Zhao, Bae, Tang (b0125) 2021; 90
Chen (10.1016/j.cej.2024.152183_b0070) 2019; 29
Guo (10.1016/j.cej.2024.152183_b0080) 2023
Wang (10.1016/j.cej.2024.152183_b0035) 2021; 13
Yu (10.1016/j.cej.2024.152183_b0115) 2023
10.1016/j.cej.2024.152183_b0240
Collishaw (10.1016/j.cej.2024.152183_b0265) 1994; 29
Zhu (10.1016/j.cej.2024.152183_b0085) 2017; 5
Du (10.1016/j.cej.2024.152183_b0210) 2021; 71
Wu (10.1016/j.cej.2024.152183_b0075) 2023; 37
Peyrton (10.1016/j.cej.2024.152183_b0065) 2021; 145
Qiu (10.1016/j.cej.2024.152183_b0215) 2017; 7
Li (10.1016/j.cej.2024.152183_b0250) 2022; 54
Lv (10.1016/j.cej.2024.152183_b0040) 2022; 150
Shiu (10.1016/j.cej.2024.152183_b0010) 2023; 15
Qu (10.1016/j.cej.2024.152183_b0130) 2022; 26
Sintas (10.1016/j.cej.2024.152183_b0060) 2023; 14
Dai (10.1016/j.cej.2024.152183_b0170) 2021; 225
Yu (10.1016/j.cej.2024.152183_b0025) 2021; 405
Li (10.1016/j.cej.2024.152183_b0120) 2022; 103
Luo (10.1016/j.cej.2024.152183_b0095) 2017; 29
Cao (10.1016/j.cej.2024.152183_b0030) 2022; 14
10.1016/j.cej.2024.152183_b0195
Yang (10.1016/j.cej.2024.152183_b0110) 2021; 206
Li (10.1016/j.cej.2024.152183_b0125) 2021; 90
Hu (10.1016/j.cej.2024.152183_b0050) 2023; 647
Wu (10.1016/j.cej.2024.152183_b0220) 2017; 9
Mao (10.1016/j.cej.2024.152183_b0020) 2022; 427
Jung (10.1016/j.cej.2024.152183_b0100) 2014; 26
Deng (10.1016/j.cej.2024.152183_b0205) 2019; 137
Hu (10.1016/j.cej.2024.152183_b0055) 2017; 24
Guo (10.1016/j.cej.2024.152183_b0175) 2022; 247
Huang (10.1016/j.cej.2024.152183_b0165) 2017; 7
Zhang (10.1016/j.cej.2024.152183_b0235) 2018; 8
Aakyiir (10.1016/j.cej.2024.152183_b0245) 2022; 117
Yan (10.1016/j.cej.2024.152183_b0190) 2020; 2
Li (10.1016/j.cej.2024.152183_b0090) 2017; 29
Guo (10.1016/j.cej.2024.152183_b0270) 2019; 137
Zhang (10.1016/j.cej.2024.152183_b0005) 2022; 114
Hu (10.1016/j.cej.2024.152183_b0155) 2022; 14
Hu (10.1016/j.cej.2024.152183_b0285) 2019; 31
Xu (10.1016/j.cej.2024.152183_b0145) 2018; 42
Wang (10.1016/j.cej.2024.152183_b0255) 2022; 14
Li (10.1016/j.cej.2024.152183_b0135) 2019; 7
Cao (10.1016/j.cej.2024.152183_b0140) 2020; 393
Lu (10.1016/j.cej.2024.152183_b0260) 1992; 255
Cao (10.1016/j.cej.2024.152183_b0045) 2022; 16
Shen (10.1016/j.cej.2024.152183_b0015) 2021; 14
Davoodi (10.1016/j.cej.2024.152183_b0225) 2020; 14
Wu (10.1016/j.cej.2024.152183_b0275) 2023; 463
Apostolopoulou-Kalkavoura (10.1016/j.cej.2024.152183_b0280) 2021; 33
Zhang (10.1016/j.cej.2024.152183_b0160) 2021; 13
Brunner (10.1016/j.cej.2024.152183_b0180) 2004; 43
Shigeyoshi Sakaki (10.1016/j.cej.2024.152183_b0185) 1998; 17
Xu (10.1016/j.cej.2024.152183_b0150) 2019; 43
Yang (10.1016/j.cej.2024.152183_b0230) 2019; 181
Verdejo (10.1016/j.cej.2024.152183_b0200) 2008; 44
Chen (10.1016/j.cej.2024.152183_b0105) 2023
References_xml – volume: 393
  year: 2020
  ident: b0140
  article-title: One-step and green synthesis of lightweight, mechanically flexible and flame-retardant polydimethylsiloxane foam nanocomposites via surface-assembling ultralow content of graphene derivative
  publication-title: Chem. Eng. J.
– volume: 31
  year: 2019
  ident: b0285
  article-title: Hollow-structured materials for thermal insulation
  publication-title: Adv. Mater.
– volume: 247
  year: 2022
  ident: b0175
  article-title: Restricted assembly of ultralow loading of graphene oxide for lightweight, mechanically flexible and flame retardant polydimethylsiloxane foam composites
  publication-title: Compos. B Eng.
– volume: 225
  year: 2021
  ident: b0170
  article-title: Bamboo-inspired mechanically flexible and electrically conductive polydimethylsiloxane foam materials with designed hierarchical pore structures for ultra-sensitive and reliable piezoresistive pressure sensor
  publication-title: Compos. B Eng.
– volume: 71
  start-page: 124
  year: 2021
  end-page: 131
  ident: b0210
  article-title: Vinyl-functionalized polyborosiloxane for improving mechanical and flame-retardancy performances of silicone rubber foam composites
  publication-title: Polym. Int.
– volume: 29
  start-page: 1702675
  year: 2017
  ident: b0095
  article-title: Hollow-structured graphene-silicone-composite-based piezoresistive sensors: decoupled property tuning and bending reliability
  publication-title: Adv. Mater.
– volume: 14
  start-page: 82
  year: 2021
  ident: b0015
  article-title: The flame-retardant mechanisms and preparation of polymer composites and their potential application in construction engineering
  publication-title: Polymers
– volume: 33
  year: 2021
  ident: b0280
  article-title: Thermally insulating nanocellulose-based materials
  publication-title: Adv. Mater.
– volume: 463
  year: 2023
  ident: b0275
  article-title: Ultrafast high-temperature sintering of polymer-derived ceramic nanocomposites for high-temperature thin-film sensors
  publication-title: Chem. Eng. J.
– volume: 14
  start-page: 1898
  year: 2022
  ident: b0255
  article-title: Research on the influence of extremely cold environment on the performance of silicone rubber and fluorinated silicone rubber
  publication-title: Polymers
– volume: 54
  start-page: 72
  year: 2022
  end-page: 82
  ident: b0250
  article-title: Nanograin–glass dual-phasic, elasto-flexible, fatigue-tolerant, and heat-insulating ceramic sponges at large scales
  publication-title: Mater. Today
– volume: 14
  start-page: 1497
  year: 2023
  end-page: 1506
  ident: b0060
  article-title: Carbamate thermal decarboxylation for the design of non-isocyanate polyurethane foams
  publication-title: Polym. Chem.
– volume: 16
  start-page: 20865
  year: 2022
  end-page: 20876
  ident: b0045
  article-title: Biomimetic, mechanically strong supramolecular nanosystem enabling solvent resistance, reliable fire protection and ultralong fire warning
  publication-title: ACS Nano
– volume: 14
  start-page: 1520
  year: 2020
  end-page: 1532
  ident: b0225
  article-title: 3D-printed ultra-robust surface-doped porous silicone sensors for wearable biomonitoring
  publication-title: ACS Nano
– volume: 5
  start-page: 16467
  year: 2017
  end-page: 16497
  ident: b0085
  article-title: Recent progress in fabrication and application of polydimethylsiloxane sponges
  publication-title: J. Mater. Chem. A
– volume: 44
  start-page: 2790
  year: 2008
  end-page: 2797
  ident: b0200
  article-title: Physical properties of silicone foams filled with carbon nanotubes and functionalized graphene sheets
  publication-title: Eur. Polym. J.
– volume: 427
  year: 2022
  ident: b0020
  article-title: Facile and green fabrication of flame-retardant Ti
  publication-title: Chem. Eng. J.
– volume: 2
  start-page: 1634
  year: 2020
  end-page: 1643
  ident: b0190
  article-title: Thiol oxidative coupling synthesis of silicone foams for oil/water separation
  publication-title: ACS Appl. Polym. Mater.
– volume: 8
  start-page: 9901
  year: 2018
  end-page: 9909
  ident: b0235
  article-title: Thermal insulation and stability of polysiloxane foams containing hydroxyl-terminated polydimethylsiloxanes
  publication-title: RSC Adv.
– reference: J. Gao, J. Wang, H. Xu, C. Wu, Preparation and properties of hollow glass bead filled silicone rubber foams with low thermal conductivity, Mater. Design (1980-2015) 46 (2013) 491–496. https://doi.org/10.1016/j.matdes.2012.08.070.
– volume: 24
  start-page: 80
  year: 2017
  ident: b0055
  article-title: Green synthesis process and properties of polyurethane completely using ethanol as solvent
  publication-title: J. Polym. Res.
– volume: 181
  year: 2019
  ident: b0230
  article-title: Light-weight and flexible silicone rubber/MWCNTs/Fe
  publication-title: Compos. Sci. Technol.
– volume: 29
  start-page: 1900469
  year: 2019
  ident: b0070
  article-title: 3D printed multifunctional, hyperelastic silicone rubber foam
  publication-title: Adv. Funct. Mater.
– start-page: e2309272
  year: 2023
  ident: b0080
  article-title: Hydrosilylation adducts to produce wide-temperature flexible polysiloxane aerogel under ambient temperature and pressure drying
  publication-title: Small
– volume: 7
  start-page: 22045
  year: 2017
  end-page: 22053
  ident: b0165
  article-title: Efficient interfacial interaction for improving mechanical properties of polydimethylsiloxane nanocomposites filled with low content of graphene oxide nanoribbons
  publication-title: RSC Adv.
– volume: 42
  start-page: 13873
  year: 2018
  end-page: 13883
  ident: b0145
  article-title: Preparation of dual-functionalized graphene oxide for the improvement of the thermal stability and flame-retardant properties of polysiloxane foam
  publication-title: New J. Chem.
– volume: 7
  start-page: 10479
  year: 2017
  end-page: 10486
  ident: b0215
  article-title: Moldable clay-like unit for synthesis of highly elastic polydimethylsiloxane sponge with nanofiller modification
  publication-title: RSC Adv.
– volume: 206
  year: 2021
  ident: b0110
  article-title: Heterogeneous silicon rubber composite foam with gradient porous structure for highly absorbed ultra-efficient electromagnetic interference shielding
  publication-title: Compos. Sci. Technol.
– volume: 43
  start-page: 6136
  year: 2019
  end-page: 6145
  ident: b0150
  article-title: Fabrication of polysiloxane foam with a pendent phenyl group for improved thermal insulation capacity and thermal stability
  publication-title: New J. Chem.
– volume: 405
  year: 2021
  ident: b0025
  article-title: Facile and green synthesis of mechanically flexible and flame-retardant clay/graphene oxide nanoribbon interconnected networks for fire safety and prevention
  publication-title: Chem. Eng. J.
– volume: 90
  year: 2021
  ident: b0125
  article-title: Environmentally stable, mechanically flexible, self-adhesive, and electrically conductive Ti3C2TX MXene hydrogels for wide-temperature strain sensing
  publication-title: Nano Energy
– volume: 7
  start-page: 27032
  year: 2019
  end-page: 27040
  ident: b0135
  article-title: In situ reactive self-assembly of a graphene oxide nano-coating in polymer foam materials with synergistic fire shielding properties
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 14207
  year: 2017
  end-page: 14215
  ident: b0220
  article-title: Novel electrically conductive porous PDMS/carbon nanofiber composites for deformable strain sensors and conductors
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  start-page: 23161
  year: 2021
  end-page: 23172
  ident: b0160
  article-title: Ultrafast flame-induced pyrolysis of poly(dimethylsiloxane) foam materials toward exceptional superhydrophobic surfaces and reliable mechanical robustness
  publication-title: ACS Appl. Mater. Interfaces
– volume: 255
  start-page: 971
  year: 1992
  end-page: 972
  ident: b0260
  article-title: Thermal conductivity of monolithic organic aerogels
  publication-title: Science
– start-page: 2304927
  year: 2023
  ident: b0105
  article-title: Self-adhesive polydimethylsiloxane foam materials decorated with MXene/cellulose nanofiber interconnected network for versatile functionalities
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 23020
  year: 2021
  end-page: 23029
  ident: b0035
  article-title: Multifunctional MXene/Chitosan-coated cotton fabric for intelligent fire protection
  publication-title: ACS Appl. Mater. Interfaces
– volume: 26
  year: 2022
  ident: b0130
  article-title: Facile synthesis of mechanically flexible and super-hydrophobic silicone aerogels with tunable pore structure for efficient oil-water separation
  publication-title: Mater. Today Chem.
– volume: 117
  start-page: 174
  year: 2022
  end-page: 182
  ident: b0245
  article-title: 3D printing interface-modified PDMS/MXene nanocomposites for stretchable conductors
  publication-title: J. Mater. Sci. Technol.
– volume: 29
  start-page: 1700898
  year: 2017
  ident: b0090
  article-title: An all-stretchable-component sodium-ion full battery
  publication-title: Adv. Mater.
– volume: 14
  start-page: 92
  year: 2022
  ident: b0030
  article-title: Fire intumescent, high-temperature resistant, mechanically flexible graphene oxide network for exceptional fire shielding and ultra-fast fire warning
  publication-title: Nanomicro Lett.
– volume: 37
  year: 2023
  ident: b0075
  article-title: Silane modified MXene/polybenzazole nanocomposite aerogels with exceptional surface hydrophobicity, flame retardance and thermal insulation
  publication-title: Compos. Commun.
– volume: 26
  start-page: 4825
  year: 2014
  end-page: 4830
  ident: b0100
  article-title: Reverse-micelle-induced porous pressure-sensitive rubber for wearable human-machine interfaces
  publication-title: Adv. Mater.
– volume: 17
  start-page: 2510
  year: 1998
  end-page: 2523
  ident: b0185
  article-title: Theoretical study of platinum(0)-catalyzed hydrosilylation of ethylene. Chalk-Harrod mechanism or modified chalk-harrod mechanism
  publication-title: Organometallics
– volume: 137
  start-page: 64
  year: 2019
  end-page: 73
  ident: b0270
  article-title: A theoretical model for gas-contributed thermal conductivity in nanoporous aerogels
  publication-title: Int. J. Heat Mass Transf.
– volume: 150
  year: 2022
  ident: b0040
  article-title: Smart fire-warning materials and sensors: Design principle, performances, and applications
  publication-title: Mater. Sci. Eng. R. Rep.
– volume: 14
  start-page: 1628
  year: 2022
  ident: b0155
  article-title: Green and rapid preparation of fluorosilicone rubber foam materials with tunable chemical resistance for efficient oil-water separation
  publication-title: Polymers
– start-page: 1
  year: 2023
  end-page: 8
  ident: b0115
  article-title: Lightweight and flame retardant fluorosilicone rubber composited foam prepared by supercritical nitrogen
  publication-title: J. Vinyl Add. Tech.
– volume: 137
  start-page: 47679
  year: 2019
  ident: b0205
  article-title: Effects of platinum compounds/superfine aluminum hydroxide/ultrafine calcium carbonate on the flame retardation and smoke suppression of silicone foams
  publication-title: J. Appl. Polym. Sci.
– volume: 103
  year: 2022
  ident: b0120
  article-title: Mechanically ductile, ionically conductive and low-temperature tolerant hydrogel enabled by high-concentration saline towards flexible strain sensor
  publication-title: Nano Energy
– volume: 43
  start-page: 2749
  year: 2004
  end-page: 2750
  ident: b0180
  article-title: A new hydrosilylation mechanism—new preparative opportunities
  publication-title: Angew. Chem. Int. Ed.
– reference: R. Verdejo, F. Barroso-Bujans, M.A. Rodriguez-Perez, A. Jose, M. Arroyo, M.A.J.J.o.M.C. Lopez-Manchado, Carbon nanotubes provide self-extinguishing grade to silicone-based foams, J. Mater. Chem. 18(33) (2008) 3933-3939. https://doi.org/10.1039/B805943H.
– volume: 15
  start-page: 953
  year: 2023
  ident: b0010
  article-title: Construction sheets made of high-performance flame-retardant nonwoven fabrics and combustion-resistant polyurethane foam: preparation process and property evaluations
  publication-title: Polymers
– volume: 29
  start-page: 2261
  year: 1994
  end-page: 2273
  ident: b0265
  article-title: An assessment of expressions for the apparent thermal conductivity of cellular materials
  publication-title: J. Mater. Sci.
– volume: 145
  year: 2021
  ident: b0065
  article-title: Structure-properties relationships of cellular materials from biobased polyurethane foams
  publication-title: Mater. Sci. Eng. R. Rep.
– volume: 114
  start-page: 131
  year: 2022
  end-page: 142
  ident: b0005
  article-title: Silicone/graphene oxide co-cross-linked aerogels with wide-temperature mechanical flexibility, super-hydrophobicity and flame resistance for exceptional thermal insulation and oil/water separation
  publication-title: J. Mater. Sci. Technol.
– volume: 647
  start-page: 467
  year: 2023
  end-page: 477
  ident: b0050
  article-title: Intelligent cyclic fire warning sensor based on hybrid PBO nanofiber and montmorillonite nanocomposite papers decorated with phenyltriethoxysilane
  publication-title: J. Colloid Interface Sci.
– volume: 16
  start-page: 20865
  issue: 12
  year: 2022
  ident: 10.1016/j.cej.2024.152183_b0045
  article-title: Biomimetic, mechanically strong supramolecular nanosystem enabling solvent resistance, reliable fire protection and ultralong fire warning
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c08368
– volume: 24
  start-page: 80
  issue: 5
  year: 2017
  ident: 10.1016/j.cej.2024.152183_b0055
  article-title: Green synthesis process and properties of polyurethane completely using ethanol as solvent
  publication-title: J. Polym. Res.
  doi: 10.1007/s10965-017-1240-5
– volume: 2
  start-page: 1634
  issue: 4
  year: 2020
  ident: 10.1016/j.cej.2024.152183_b0190
  article-title: Thiol oxidative coupling synthesis of silicone foams for oil/water separation
  publication-title: ACS Appl. Polym. Mater.
  doi: 10.1021/acsapm.0c00071
– volume: 54
  start-page: 72
  year: 2022
  ident: 10.1016/j.cej.2024.152183_b0250
  article-title: Nanograin–glass dual-phasic, elasto-flexible, fatigue-tolerant, and heat-insulating ceramic sponges at large scales
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2022.02.007
– volume: 5
  start-page: 16467
  issue: 32
  year: 2017
  ident: 10.1016/j.cej.2024.152183_b0085
  article-title: Recent progress in fabrication and application of polydimethylsiloxane sponges
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA04577H
– volume: 7
  start-page: 10479
  issue: 17
  year: 2017
  ident: 10.1016/j.cej.2024.152183_b0215
  article-title: Moldable clay-like unit for synthesis of highly elastic polydimethylsiloxane sponge with nanofiller modification
  publication-title: RSC Adv.
  doi: 10.1039/C6RA26701G
– volume: 14
  start-page: 1628
  issue: 8
  year: 2022
  ident: 10.1016/j.cej.2024.152183_b0155
  article-title: Green and rapid preparation of fluorosilicone rubber foam materials with tunable chemical resistance for efficient oil-water separation
  publication-title: Polymers
  doi: 10.3390/polym14081628
– volume: 26
  start-page: 4825
  issue: 28
  year: 2014
  ident: 10.1016/j.cej.2024.152183_b0100
  article-title: Reverse-micelle-induced porous pressure-sensitive rubber for wearable human-machine interfaces
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201401364
– volume: 427
  year: 2022
  ident: 10.1016/j.cej.2024.152183_b0020
  article-title: Facile and green fabrication of flame-retardant Ti3C2Tx MXene networks for ultrafast, reusable and weather-resistant fire warning
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131615
– volume: 7
  start-page: 27032
  issue: 47
  year: 2019
  ident: 10.1016/j.cej.2024.152183_b0135
  article-title: In situ reactive self-assembly of a graphene oxide nano-coating in polymer foam materials with synergistic fire shielding properties
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA09372A
– volume: 37
  year: 2023
  ident: 10.1016/j.cej.2024.152183_b0075
  article-title: Silane modified MXene/polybenzazole nanocomposite aerogels with exceptional surface hydrophobicity, flame retardance and thermal insulation
  publication-title: Compos. Commun.
  doi: 10.1016/j.coco.2022.101402
– volume: 29
  start-page: 1900469
  issue: 23
  year: 2019
  ident: 10.1016/j.cej.2024.152183_b0070
  article-title: 3D printed multifunctional, hyperelastic silicone rubber foam
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201900469
– volume: 71
  start-page: 124
  issue: 1
  year: 2021
  ident: 10.1016/j.cej.2024.152183_b0210
  article-title: Vinyl-functionalized polyborosiloxane for improving mechanical and flame-retardancy performances of silicone rubber foam composites
  publication-title: Polym. Int.
  doi: 10.1002/pi.6292
– volume: 181
  year: 2019
  ident: 10.1016/j.cej.2024.152183_b0230
  article-title: Light-weight and flexible silicone rubber/MWCNTs/Fe3O4 nanocomposite foams for efficient electromagnetic interference shielding and microwave absorption
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2019.05.027
– volume: 206
  year: 2021
  ident: 10.1016/j.cej.2024.152183_b0110
  article-title: Heterogeneous silicon rubber composite foam with gradient porous structure for highly absorbed ultra-efficient electromagnetic interference shielding
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2021.108663
– volume: 33
  issue: 28
  year: 2021
  ident: 10.1016/j.cej.2024.152183_b0280
  article-title: Thermally insulating nanocellulose-based materials
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202001839
– volume: 31
  issue: 38
  year: 2019
  ident: 10.1016/j.cej.2024.152183_b0285
  article-title: Hollow-structured materials for thermal insulation
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801001
– volume: 13
  start-page: 23161
  issue: 19
  year: 2021
  ident: 10.1016/j.cej.2024.152183_b0160
  article-title: Ultrafast flame-induced pyrolysis of poly(dimethylsiloxane) foam materials toward exceptional superhydrophobic surfaces and reliable mechanical robustness
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c03272
– volume: 137
  start-page: 64
  year: 2019
  ident: 10.1016/j.cej.2024.152183_b0270
  article-title: A theoretical model for gas-contributed thermal conductivity in nanoporous aerogels
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.03.106
– volume: 463
  year: 2023
  ident: 10.1016/j.cej.2024.152183_b0275
  article-title: Ultrafast high-temperature sintering of polymer-derived ceramic nanocomposites for high-temperature thin-film sensors
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.142518
– volume: 114
  start-page: 131
  year: 2022
  ident: 10.1016/j.cej.2024.152183_b0005
  article-title: Silicone/graphene oxide co-cross-linked aerogels with wide-temperature mechanical flexibility, super-hydrophobicity and flame resistance for exceptional thermal insulation and oil/water separation
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2021.11.012
– volume: 7
  start-page: 22045
  issue: 36
  year: 2017
  ident: 10.1016/j.cej.2024.152183_b0165
  article-title: Efficient interfacial interaction for improving mechanical properties of polydimethylsiloxane nanocomposites filled with low content of graphene oxide nanoribbons
  publication-title: RSC Adv.
  doi: 10.1039/C7RA02439H
– volume: 145
  year: 2021
  ident: 10.1016/j.cej.2024.152183_b0065
  article-title: Structure-properties relationships of cellular materials from biobased polyurethane foams
  publication-title: Mater. Sci. Eng. R. Rep.
  doi: 10.1016/j.mser.2021.100608
– volume: 117
  start-page: 174
  year: 2022
  ident: 10.1016/j.cej.2024.152183_b0245
  article-title: 3D printing interface-modified PDMS/MXene nanocomposites for stretchable conductors
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2021.11.048
– ident: 10.1016/j.cej.2024.152183_b0195
  doi: 10.1039/b805943h
– volume: 29
  start-page: 1700898
  issue: 23
  year: 2017
  ident: 10.1016/j.cej.2024.152183_b0090
  article-title: An all-stretchable-component sodium-ion full battery
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700898
– volume: 42
  start-page: 13873
  issue: 16
  year: 2018
  ident: 10.1016/j.cej.2024.152183_b0145
  article-title: Preparation of dual-functionalized graphene oxide for the improvement of the thermal stability and flame-retardant properties of polysiloxane foam
  publication-title: New J. Chem.
  doi: 10.1039/C8NJ02361A
– volume: 26
  year: 2022
  ident: 10.1016/j.cej.2024.152183_b0130
  article-title: Facile synthesis of mechanically flexible and super-hydrophobic silicone aerogels with tunable pore structure for efficient oil-water separation
  publication-title: Mater. Today Chem.
– volume: 14
  start-page: 82
  issue: 1
  year: 2021
  ident: 10.1016/j.cej.2024.152183_b0015
  article-title: The flame-retardant mechanisms and preparation of polymer composites and their potential application in construction engineering
  publication-title: Polymers
  doi: 10.3390/polym14010082
– volume: 14
  start-page: 92
  issue: 1
  year: 2022
  ident: 10.1016/j.cej.2024.152183_b0030
  article-title: Fire intumescent, high-temperature resistant, mechanically flexible graphene oxide network for exceptional fire shielding and ultra-fast fire warning
  publication-title: Nanomicro Lett.
– start-page: 1
  year: 2023
  ident: 10.1016/j.cej.2024.152183_b0115
  article-title: Lightweight and flame retardant fluorosilicone rubber composited foam prepared by supercritical nitrogen
  publication-title: J. Vinyl Add. Tech.
– volume: 647
  start-page: 467
  year: 2023
  ident: 10.1016/j.cej.2024.152183_b0050
  article-title: Intelligent cyclic fire warning sensor based on hybrid PBO nanofiber and montmorillonite nanocomposite papers decorated with phenyltriethoxysilane
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2023.05.119
– volume: 17
  start-page: 2510
  year: 1998
  ident: 10.1016/j.cej.2024.152183_b0185
  article-title: Theoretical study of platinum(0)-catalyzed hydrosilylation of ethylene. Chalk-Harrod mechanism or modified chalk-harrod mechanism
  publication-title: Organometallics
  doi: 10.1021/om980190a
– volume: 43
  start-page: 2749
  issue: 21
  year: 2004
  ident: 10.1016/j.cej.2024.152183_b0180
  article-title: A new hydrosilylation mechanism—new preparative opportunities
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200301742
– volume: 247
  year: 2022
  ident: 10.1016/j.cej.2024.152183_b0175
  article-title: Restricted assembly of ultralow loading of graphene oxide for lightweight, mechanically flexible and flame retardant polydimethylsiloxane foam composites
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2022.110290
– volume: 29
  start-page: 2261
  year: 1994
  ident: 10.1016/j.cej.2024.152183_b0265
  article-title: An assessment of expressions for the apparent thermal conductivity of cellular materials
  publication-title: J. Mater. Sci.
  doi: 10.1007/BF00363413
– volume: 9
  start-page: 14207
  issue: 16
  year: 2017
  ident: 10.1016/j.cej.2024.152183_b0220
  article-title: Novel electrically conductive porous PDMS/carbon nanofiber composites for deformable strain sensors and conductors
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b00847
– volume: 44
  start-page: 2790
  issue: 9
  year: 2008
  ident: 10.1016/j.cej.2024.152183_b0200
  article-title: Physical properties of silicone foams filled with carbon nanotubes and functionalized graphene sheets
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2008.06.033
– volume: 225
  year: 2021
  ident: 10.1016/j.cej.2024.152183_b0170
  article-title: Bamboo-inspired mechanically flexible and electrically conductive polydimethylsiloxane foam materials with designed hierarchical pore structures for ultra-sensitive and reliable piezoresistive pressure sensor
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2021.109243
– volume: 137
  start-page: 47679
  issue: 1
  year: 2019
  ident: 10.1016/j.cej.2024.152183_b0205
  article-title: Effects of platinum compounds/superfine aluminum hydroxide/ultrafine calcium carbonate on the flame retardation and smoke suppression of silicone foams
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.47679
– volume: 14
  start-page: 1497
  issue: 13
  year: 2023
  ident: 10.1016/j.cej.2024.152183_b0060
  article-title: Carbamate thermal decarboxylation for the design of non-isocyanate polyurethane foams
  publication-title: Polym. Chem.
  doi: 10.1039/D3PY00096F
– volume: 14
  start-page: 1898
  issue: 9
  year: 2022
  ident: 10.1016/j.cej.2024.152183_b0255
  article-title: Research on the influence of extremely cold environment on the performance of silicone rubber and fluorinated silicone rubber
  publication-title: Polymers
  doi: 10.3390/polym14091898
– volume: 15
  start-page: 953
  issue: 4
  year: 2023
  ident: 10.1016/j.cej.2024.152183_b0010
  article-title: Construction sheets made of high-performance flame-retardant nonwoven fabrics and combustion-resistant polyurethane foam: preparation process and property evaluations
  publication-title: Polymers
  doi: 10.3390/polym15040953
– start-page: e2309272
  year: 2023
  ident: 10.1016/j.cej.2024.152183_b0080
  article-title: Hydrosilylation adducts to produce wide-temperature flexible polysiloxane aerogel under ambient temperature and pressure drying
  publication-title: Small
– volume: 405
  year: 2021
  ident: 10.1016/j.cej.2024.152183_b0025
  article-title: Facile and green synthesis of mechanically flexible and flame-retardant clay/graphene oxide nanoribbon interconnected networks for fire safety and prevention
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126620
– volume: 255
  start-page: 971
  year: 1992
  ident: 10.1016/j.cej.2024.152183_b0260
  article-title: Thermal conductivity of monolithic organic aerogels
  publication-title: Science
  doi: 10.1126/science.255.5047.971
– volume: 150
  year: 2022
  ident: 10.1016/j.cej.2024.152183_b0040
  article-title: Smart fire-warning materials and sensors: Design principle, performances, and applications
  publication-title: Mater. Sci. Eng. R. Rep.
  doi: 10.1016/j.mser.2022.100690
– volume: 90
  year: 2021
  ident: 10.1016/j.cej.2024.152183_b0125
  article-title: Environmentally stable, mechanically flexible, self-adhesive, and electrically conductive Ti3C2TX MXene hydrogels for wide-temperature strain sensing
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106502
– volume: 393
  year: 2020
  ident: 10.1016/j.cej.2024.152183_b0140
  article-title: One-step and green synthesis of lightweight, mechanically flexible and flame-retardant polydimethylsiloxane foam nanocomposites via surface-assembling ultralow content of graphene derivative
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124724
– volume: 43
  start-page: 6136
  issue: 16
  year: 2019
  ident: 10.1016/j.cej.2024.152183_b0150
  article-title: Fabrication of polysiloxane foam with a pendent phenyl group for improved thermal insulation capacity and thermal stability
  publication-title: New J. Chem.
  doi: 10.1039/C9NJ00782B
– start-page: 2304927
  year: 2023
  ident: 10.1016/j.cej.2024.152183_b0105
  article-title: Self-adhesive polydimethylsiloxane foam materials decorated with MXene/cellulose nanofiber interconnected network for versatile functionalities
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202304927
– volume: 29
  start-page: 1702675
  issue: 40
  year: 2017
  ident: 10.1016/j.cej.2024.152183_b0095
  article-title: Hollow-structured graphene-silicone-composite-based piezoresistive sensors: decoupled property tuning and bending reliability
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201702675
– volume: 103
  year: 2022
  ident: 10.1016/j.cej.2024.152183_b0120
  article-title: Mechanically ductile, ionically conductive and low-temperature tolerant hydrogel enabled by high-concentration saline towards flexible strain sensor
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107789
– volume: 13
  start-page: 23020
  issue: 19
  year: 2021
  ident: 10.1016/j.cej.2024.152183_b0035
  article-title: Multifunctional MXene/Chitosan-coated cotton fabric for intelligent fire protection
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c05222
– ident: 10.1016/j.cej.2024.152183_b0240
  doi: 10.1016/j.matdes.2012.08.070
– volume: 8
  start-page: 9901
  issue: 18
  year: 2018
  ident: 10.1016/j.cej.2024.152183_b0235
  article-title: Thermal insulation and stability of polysiloxane foams containing hydroxyl-terminated polydimethylsiloxanes
  publication-title: RSC Adv.
  doi: 10.1039/C8RA00222C
– volume: 14
  start-page: 1520
  issue: 2
  year: 2020
  ident: 10.1016/j.cej.2024.152183_b0225
  article-title: 3D-printed ultra-robust surface-doped porous silicone sensors for wearable biomonitoring
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b06283
SSID ssj0006919
Score 2.532992
Snippet •Introducing phenyl groups onto Si–O–Si chains can tailor the foaming and cross-linking match.•The lowest density of the optimized PhSiRF material is as light...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 152183
SubjectTerms Phenyl group
Silicone foam material
Thermal insulation
Tunable pore structure
Wide-temperature flexibility
Title Large-scale and facile fabrication of phenyl-containing silicone foam materials with lightweight, wide-temperature flexibility and tunable pore structure for exceptional thermal insulation
URI https://dx.doi.org/10.1016/j.cej.2024.152183
Volume 492
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV25TsQwELUQNFAgTnHLBRXCbBI7a6dECLSwQMEh6CLHh7Ro2UWwCGj4Mj6OGcfhkICCykoyVo6Z2M_28xtCNoVMlC1gkJP5tsUtOY5V3AtmM5dym0JEO9wofHLa7lyKo-v8eozsNXthkFYZ2_66TQ-tdTzTil-zddfrtc5TXNMqhERFubYMgpJCSIzynddPmke7CMk90JihdbOyGThext3AEDETmAUoVfznvulLf3MwQ6YjUKS79bPMkjE3mCNTX-QD58nbMdK42QN8Zkf1wFKvDfzkUFT3cSqODj1FFtdLnyEpvU4HQR96fQiAAVgO9S0FzFqHIcVJWdrH4fpTmDHdhjPWMZSvitrL1KOAZiDUvoRbjh7D5isKMN7RWow2mA3vqXuOlBl4DYSZt1AG6nt4sgVyebB_sddhMRsDM1khR4xzg6vV1kifWKcKnSXOeS-l4pW23igH6MkaK6HHzyrAmUYBVNKCG5PBsEnzRTI-gFdbIjTXyki4nKVGiaKSKpHO5lwDNk1Sn5tlkjR-KE2UKseMGf2y4aTdlOC6El1X1q5bJlsfVe5qnY6_jEXj3PJbsJXQj_xebeV_1VbJJB7hhHCar5FxcIVbByQzqjZCqG6Qid3DbucUy-7ZVfcd-Ob5KA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iB_UgPvFtDp7EuG2TbtKjiLLq6kUFbyXNA1bWXdEV9eIv88c5k6Y-QD14KqQT-phJ8iX58g0h20ImyhYwycl82-KRHMcq7gWzmUu5TSGiHR4UPjtvd67EyXV-PUYOmrMwSKuMfX_dp4feOpa04t9s3fV6rYsU97QKIVFRri1RUHJCQPPFNAZ7r588j3YRsnugNUPzZmszkLyMu4E5YiYwDVCq-M-D05cB52iWzESkSPfrl5kjY24wT6a_6AcukLcu8rjZA_xnR_XAUq8NtHK4VPdxLY4OPUUa10ufISu9zgdBH3p9iIABWA71LQXQWschxVVZ2sf5-lNYMt2FEusY6ldF8WXqUUEzMGpfwiNHj-H0FQUc72itRhvMhvfUPUfODHwG4sxbuAbue3izRXJ1dHh50GExHQMzWSFHjHOD29XWSJ9YpwqdJc55L6XilbbeKAfwyRorYcjPKgCaRgFW0oIbk8G8SfMlMj6AT1smNNfKSLidpUaJopIqkc7mXAM4TVKfmxWSNH4oTdQqx5QZ_bIhpd2U4LoSXVfWrlshOx9V7mqhjr-MRePc8lu0lTCQ_F5t9X_Vtshk5_KsW3aPz0_XyBTewdXhNF8n4-AWtwGwZlRthrB9B9dN-RM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-scale+and+facile+fabrication+of+phenyl-containing+silicone+foam+materials+with+lightweight%2C+wide-temperature+flexibility+and+tunable+pore+structure+for+exceptional+thermal+insulation&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Wu%2C+Yu-Yue&rft.au=Wu%2C+Zhi-Hao&rft.au=Chen%2C+Zuan-Yu&rft.au=Peng%2C+Li-Dong&rft.date=2024-07-15&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.volume=492&rft_id=info:doi/10.1016%2Fj.cej.2024.152183&rft.externalDocID=S1385894724036702
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon