Large-scale and facile fabrication of phenyl-containing silicone foam materials with lightweight, wide-temperature flexibility and tunable pore structure for exceptional thermal insulation
•Introducing phenyl groups onto Si–O–Si chains can tailor the foaming and cross-linking match.•The lowest density of the optimized PhSiRF material is as light as ∼100 mg/cm3.•The pore structure and morphology in the PhSiRF materials can be easily achieved.•The PhSiRF presents good wide-temperature f...
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 492; p. 152183 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Introducing phenyl groups onto Si–O–Si chains can tailor the foaming and cross-linking match.•The lowest density of the optimized PhSiRF material is as light as ∼100 mg/cm3.•The pore structure and morphology in the PhSiRF materials can be easily achieved.•The PhSiRF presents good wide-temperature flexibility and exceptional thermal insulation.
Silicone foam materials with unique inorganic/organic molecular networks and porous structures are widely used in many emerging fields from aerospace to new energy fields. However, current silicone foam materials still show some limitations, such as the relatively high-density values of >200 mg cm−3, complex fabricating process and difficulty in tailoring pore structure. Herein, we report a large-scale and facile fabricating strategy to prepare phenyl-containing silicone foam materials (PhSiRF) with ultra-lightweight feature, tunable pore structure, and excellent wide-temperature mechanical flexibility. Interestingly, the presence of phenyl groups onto the Si–O–Si backbone tailors the chemical foaming rate probably due to the steric hindrance effect, thus producing tunable pore size distributions in the range of 180–500 μm. Typically, the PhSiRF with 50 % phenyl groups not only shows a very low density of ∼100 mg cm−3, superior to previous silicone foams and composites, but also exhibits wide-temperature flexibility (stable compressive strain of 80 % from −90 to 210 °C) and excellent thermal insulation performance, which outperforms those of conventional polymer foams including polyurethane, polyethylene and melamine foams. Based on the structure observation and theory analysis, the influence of different pore morphological structures on the thermal insulation performance is discussed and demonstrated. Clearly, this work provides a new yet simple method for developing high-performance silicone rubber foam materials for promising thermal insulation applications. |
---|---|
AbstractList | •Introducing phenyl groups onto Si–O–Si chains can tailor the foaming and cross-linking match.•The lowest density of the optimized PhSiRF material is as light as ∼100 mg/cm3.•The pore structure and morphology in the PhSiRF materials can be easily achieved.•The PhSiRF presents good wide-temperature flexibility and exceptional thermal insulation.
Silicone foam materials with unique inorganic/organic molecular networks and porous structures are widely used in many emerging fields from aerospace to new energy fields. However, current silicone foam materials still show some limitations, such as the relatively high-density values of >200 mg cm−3, complex fabricating process and difficulty in tailoring pore structure. Herein, we report a large-scale and facile fabricating strategy to prepare phenyl-containing silicone foam materials (PhSiRF) with ultra-lightweight feature, tunable pore structure, and excellent wide-temperature mechanical flexibility. Interestingly, the presence of phenyl groups onto the Si–O–Si backbone tailors the chemical foaming rate probably due to the steric hindrance effect, thus producing tunable pore size distributions in the range of 180–500 μm. Typically, the PhSiRF with 50 % phenyl groups not only shows a very low density of ∼100 mg cm−3, superior to previous silicone foams and composites, but also exhibits wide-temperature flexibility (stable compressive strain of 80 % from −90 to 210 °C) and excellent thermal insulation performance, which outperforms those of conventional polymer foams including polyurethane, polyethylene and melamine foams. Based on the structure observation and theory analysis, the influence of different pore morphological structures on the thermal insulation performance is discussed and demonstrated. Clearly, this work provides a new yet simple method for developing high-performance silicone rubber foam materials for promising thermal insulation applications. |
ArticleNumber | 152183 |
Author | Peng, Li-Dong Shi, Yong-Qian Cao, Cheng-Fei Chen, Zuan-Yu Wu, Yu-Yue Guan, Zi-Qi Tang, Long-Cheng Wu, Zhi-Hao Zhang, Guo-Dong Li, Yang Song, Pingan Gao, Jie-Feng |
Author_xml | – sequence: 1 givenname: Yu-Yue surname: Wu fullname: Wu, Yu-Yue organization: Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China – sequence: 2 givenname: Zhi-Hao orcidid: 0009-0000-7656-6930 surname: Wu fullname: Wu, Zhi-Hao organization: Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China – sequence: 3 givenname: Zuan-Yu surname: Chen fullname: Chen, Zuan-Yu organization: Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China – sequence: 4 givenname: Li-Dong surname: Peng fullname: Peng, Li-Dong organization: Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China – sequence: 5 givenname: Zi-Qi orcidid: 0009-0000-1496-9144 surname: Guan fullname: Guan, Zi-Qi organization: Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China – sequence: 6 givenname: Yang surname: Li fullname: Li, Yang email: liyang666@gachon.ac.kr organization: Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China – sequence: 7 givenname: Cheng-Fei surname: Cao fullname: Cao, Cheng-Fei organization: Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China – sequence: 8 givenname: Guo-Dong surname: Zhang fullname: Zhang, Guo-Dong email: zhangguodong@hznu.edu.cn organization: Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China – sequence: 9 givenname: Jie-Feng orcidid: 0000-0002-6038-9770 surname: Gao fullname: Gao, Jie-Feng organization: College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China – sequence: 10 givenname: Pingan orcidid: 0000-0003-1082-652X surname: Song fullname: Song, Pingan organization: Centre for Future Materials, University of Southern Queensland, Springfield Campus, QLD 4300, Australia – sequence: 11 givenname: Yong-Qian orcidid: 0000-0002-5646-4627 surname: Shi fullname: Shi, Yong-Qian organization: College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China – sequence: 12 givenname: Long-Cheng orcidid: 0000-0002-2382-8850 surname: Tang fullname: Tang, Long-Cheng email: lctang@hznu.edu.cn organization: Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China |
BookMark | eNp9kMtu2zAQRbVIgbz6AdnxAyKXpKwXsiqCvgAD3aRrYTQc2mNQlEDSTfxv_bjSdlddZMPhY87cy3tbXPnZU1E8KLlSUjWf9iuk_UpLvV6pWquuuipuVNXVZdev2-viNsa9lLLpVX9T_NlA2FIZERwJ8EZYQM5bC2NghMSzF7MVy4780ZU4-wTs2W9FZMf5mDtnmMQEiQKDi-KV00443u7SK53Wx3xjqEw0LRQgHUImHL3xmPl0PEumg4cxay5zfowpHPDSNgdBb0jLyQQ4kXYUplzZx4M7O7svPtisSR__1bvi19cvL8_fy83Pbz-eP29K1H2byqpCJfvWYGuloa4HLYmsbduuGsFY7EjXjUHTNo3So6oldqruYV0h6q7RUN0V6jIXwxxjIDssgScIx0HJ4RT5sB9y5MMp8uESeWba_xjkdHadArB7l3y6kJS_9JspDBGZPJLhQJgGM_M79F9e_6aU |
CitedBy_id | crossref_primary_10_1088_2631_6331_ad8ea7 crossref_primary_10_58224_2618_7183_2024_7_3_4 crossref_primary_10_1002_marc_202400698 crossref_primary_10_1007_s11804_025_00648_x crossref_primary_10_1007_s13399_025_06493_w crossref_primary_10_1016_j_surfin_2024_105607 crossref_primary_10_1021_acsapm_4c02747 crossref_primary_10_1002_smll_202406102 crossref_primary_10_1016_j_scib_2025_01_005 crossref_primary_10_1021_acsaelm_4c01498 crossref_primary_10_1021_acsapm_4c02511 crossref_primary_10_1111_ijac_15085 crossref_primary_10_1016_j_ijbiomac_2025_140324 crossref_primary_10_3390_polym16172442 |
Cites_doi | 10.1021/acsnano.2c08368 10.1007/s10965-017-1240-5 10.1021/acsapm.0c00071 10.1016/j.mattod.2022.02.007 10.1039/C7TA04577H 10.1039/C6RA26701G 10.3390/polym14081628 10.1002/adma.201401364 10.1016/j.cej.2021.131615 10.1039/C9TA09372A 10.1016/j.coco.2022.101402 10.1002/adfm.201900469 10.1002/pi.6292 10.1016/j.compscitech.2019.05.027 10.1016/j.compscitech.2021.108663 10.1002/adma.202001839 10.1002/adma.201801001 10.1021/acsami.1c03272 10.1016/j.ijheatmasstransfer.2019.03.106 10.1016/j.cej.2023.142518 10.1016/j.jmst.2021.11.012 10.1039/C7RA02439H 10.1016/j.mser.2021.100608 10.1016/j.jmst.2021.11.048 10.1039/b805943h 10.1002/adma.201700898 10.1039/C8NJ02361A 10.3390/polym14010082 10.1016/j.jcis.2023.05.119 10.1021/om980190a 10.1002/anie.200301742 10.1016/j.compositesb.2022.110290 10.1007/BF00363413 10.1021/acsami.7b00847 10.1016/j.eurpolymj.2008.06.033 10.1016/j.compositesb.2021.109243 10.1002/app.47679 10.1039/D3PY00096F 10.3390/polym14091898 10.3390/polym15040953 10.1016/j.cej.2020.126620 10.1126/science.255.5047.971 10.1016/j.mser.2022.100690 10.1016/j.nanoen.2021.106502 10.1016/j.cej.2020.124724 10.1039/C9NJ00782B 10.1002/adfm.202304927 10.1002/adma.201702675 10.1016/j.nanoen.2022.107789 10.1021/acsami.1c05222 10.1016/j.matdes.2012.08.070 10.1039/C8RA00222C 10.1021/acsnano.9b06283 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cej.2024.152183 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_cej_2024_152183 S1385894724036702 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSG SSJ SSZ T5K ~G- AATTM AAYWO AAYXX ABXDB ACVFH ADCNI AEIPS AEUPX AFFNX AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BKOMP BNPGV CITATION EJD FEDTE FGOYB HVGLF HZ~ R2- SSH ZY4 |
ID | FETCH-LOGICAL-c297t-33c1097dc7f0de89a20eeff7783badfc8e256dcd76612b150c8159a43cc2862a3 |
IEDL.DBID | .~1 |
ISSN | 1385-8947 |
IngestDate | Tue Jul 01 02:12:05 EDT 2025 Thu Apr 24 23:11:14 EDT 2025 Sat Oct 19 15:54:48 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Silicone foam material Phenyl group Wide-temperature flexibility Tunable pore structure Thermal insulation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-33c1097dc7f0de89a20eeff7783badfc8e256dcd76612b150c8159a43cc2862a3 |
ORCID | 0009-0000-1496-9144 0000-0002-6038-9770 0000-0002-2382-8850 0000-0003-1082-652X 0009-0000-7656-6930 0000-0002-5646-4627 |
ParticipantIDs | crossref_primary_10_1016_j_cej_2024_152183 crossref_citationtrail_10_1016_j_cej_2024_152183 elsevier_sciencedirect_doi_10_1016_j_cej_2024_152183 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-15 |
PublicationDateYYYYMMDD | 2024-07-15 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Verdejo, Saiz-Arroyo, Carretero-Gonzalez, Barroso-Bujans, Rodriguez-Perez, Lopez-Manchado (b0200) 2008; 44 Du, Yin, Huang, Ge (b0210) 2021; 71 R. Verdejo, F. Barroso-Bujans, M.A. Rodriguez-Perez, A. Jose, M. Arroyo, M.A.J.J.o.M.C. Lopez-Manchado, Carbon nanotubes provide self-extinguishing grade to silicone-based foams, J. Mater. Chem. 18(33) (2008) 3933-3939. https://doi.org/10.1039/B805943H. Mao, Yu, Cao, Gong, Zhang, Zhao, Song, Gao, Tang (b0020) 2022; 427 Yan, Cao, Xue, Feng, Zhang, Wang (b0190) 2020; 2 Aakyiir, Tanner, Yap, Rastin, Tung, Losic, Meng, Ma (b0245) 2022; 117 Chen, Chen, Mao, Wu, Yang, Gong, Zhao, Cao, Song, Gao, Zhang, Shi, Cao, Tang (b0105) 2023 Deng, Kang, Xiao, Shu, Wang, Laiwang, Liu (b0205) 2019; 137 Li, Jia, Liu, Fang, Zhu, Li, Schaefer, Li, Zhang, Feng, Hussain, Xi, Wang, Lin, Wei, Wu (b0250) 2022; 54 Li, He, Zeng, Jiang, Wu, Gong, Li, Bae, Wang, Tang (b0120) 2022; 103 Collishaw, Evans (b0265) 1994; 29 Luo, Huang, Liu, Chen, Wong, Zhao (b0095) 2017; 29 Qu, Guo, Pan, Wu, Guo, Feng, Kong, Zhang, Zhang, Zhao, Gong, Gao, Liu, Mao, Tang (b0130) 2022; 26 Guo, Wang, Qu, Yang, Qin, Li, Zhang, Gao, Shi, Song, Tang (b0080) 2023 Wu, Zhang, Ladani, Ravindran, Mouritz, Kinloch, Wang (b0220) 2017; 9 Hu, Yuan, Yan, Zhou, Lei (b0055) 2017; 24 Yu, Song, Yang, Wen, Zhao, Zhao, Zhang (b0115) 2023 Davoodi, Montazerian, Haghniaz, Rashidi, Ahadian, Sheikhi, Chen, Khademhosseini, Milani, Hoorfar, Toyserkani (b0225) 2020; 14 Wu, Fu, Zeng, Chen, Pan, Lin, Xu, Chen, Sun, Hai (b0275) 2023; 463 Brunner (b0180) 2004; 43 Shigeyoshi Sakaki, Sugimoto (b0185) 1998; 17 Dai, Gu, Zhao, Zhang, Gao, Wu, Shen, Zhang, Kong, Li, Gong, Zhang, Tang (b0170) 2021; 225 Yu, Mao, Li, Xia, Cao, Zhao, Zhang, Zheng, Gao, Tang (b0025) 2021; 405 Wang, Lai, Li, Jiang, Gao, Zeng (b0035) 2021; 13 Chen, Zhao, Ren, Rong, Cao, Advincula (b0070) 2019; 29 Hu, Yu, Zheng, Hu, Cao, Cao, Sun, Gao, Shi, Song, Tang (b0050) 2023; 647 Qiu, Bi, Hu, Wu, Li, Sun (b0215) 2017; 7 Sintas, Wolfgang, Long (b0060) 2023; 14 Li, Cao, Li, Huang, Mao, Zhang, Wang, Guo, Gong, Zhang, Zhao, Guan, Wan, Tang, Mai (b0135) 2019; 7 Jung, Kim, Kim, Choi, Lee, Park, Hyeon, Kim (b0100) 2014; 26 Zhang, Wu, Xia, Qu, Pan, Hu, Zhao, Cao, Chen, Yuan, Gao, Mai, Tang (b0160) 2021; 13 Xu, Zhang, Qu, Dai, Li, Sui, Zhang (b0150) 2019; 43 Lu, Arduini-Schuster, Kuhn, Nilsson, Fricke, Pekala (b0260) 1992; 255 Peyrton, Avérous (b0065) 2021; 145 Zhang, Qu, Wang, Xu, Zhang (b0235) 2018; 8 Cao, Yu, Huang, Feng, Lv, Sun, Tang, Feng, Song, Wang (b0045) 2022; 16 Yang, Liao, Wang, Chen, Song, Tang, Guo, Liu, Li (b0110) 2021; 206 Wang, Hou, Ma, Li, Geng, Zhang, Li (b0255) 2022; 14 Yang, Liao, Li, He, Zhang, Tang, Wang, Li (b0230) 2019; 181 Shen, Liang, Lin, Lin, Yu, Wang (b0015) 2021; 14 Li, Ding, Ha, Shi, Peng, Zhang, Ellison, Yu (b0090) 2017; 29 Zhang, Chen, Tang, Li, Ma, Zhang, Boukherroub, Cao, Gong, Song, Cao, Tang (b0005) 2022; 114 Hu, Wu, Sun (b0285) 2019; 31 Lv, Cao, Qu, Zhang, Zhao, Cao, Song, Tang (b0040) 2022; 150 Apostolopoulou-Kalkavoura, Munier, Bergstrom (b0280) 2021; 33 Huang, Zang, Zhang, Guan, Li, Zhao, Tang (b0165) 2017; 7 Wu, Feng, Qu, Gong, Cao, Zhang, Shi, Gao, Song, Tang (b0075) 2023; 37 Cao, Yu, Chen, Qu, Li, Shi, Ma, Sun, Pan, Tang, Song, Wang (b0030) 2022; 14 Guo, Wang, Cao, Qu, Lv, Zhang, Gong, Song, Gao, Mai, Tang (b0175) 2022; 247 Guo, Tang (b0270) 2019; 137 Zhu, Handschuh-Wang, Zhou (b0085) 2017; 5 Cao, Wang, Zhang, Guo, Li, Xia, Zhang, Zhao, Chen, Wang, Gao, Song, Tang (b0140) 2020; 393 J. Gao, J. Wang, H. Xu, C. Wu, Preparation and properties of hollow glass bead filled silicone rubber foams with low thermal conductivity, Mater. Design (1980-2015) 46 (2013) 491–496. https://doi.org/10.1016/j.matdes.2012.08.070. Xu, Zhang, Li, Dai, Qu, Sui, Gu, Dou (b0145) 2018; 42 Shiu, Huang, Yang, Chen, Lou, Lin (b0010) 2023; 15 Hu, Xia, Pan, Chen, Qu, Chen, Zhang, Zhao, Gong, Xue, Tang (b0155) 2022; 14 Li, Yu, Guo, Guo, Li, Gong, Zhao, Bae, Tang (b0125) 2021; 90 Chen (10.1016/j.cej.2024.152183_b0070) 2019; 29 Guo (10.1016/j.cej.2024.152183_b0080) 2023 Wang (10.1016/j.cej.2024.152183_b0035) 2021; 13 Yu (10.1016/j.cej.2024.152183_b0115) 2023 10.1016/j.cej.2024.152183_b0240 Collishaw (10.1016/j.cej.2024.152183_b0265) 1994; 29 Zhu (10.1016/j.cej.2024.152183_b0085) 2017; 5 Du (10.1016/j.cej.2024.152183_b0210) 2021; 71 Wu (10.1016/j.cej.2024.152183_b0075) 2023; 37 Peyrton (10.1016/j.cej.2024.152183_b0065) 2021; 145 Qiu (10.1016/j.cej.2024.152183_b0215) 2017; 7 Li (10.1016/j.cej.2024.152183_b0250) 2022; 54 Lv (10.1016/j.cej.2024.152183_b0040) 2022; 150 Shiu (10.1016/j.cej.2024.152183_b0010) 2023; 15 Qu (10.1016/j.cej.2024.152183_b0130) 2022; 26 Sintas (10.1016/j.cej.2024.152183_b0060) 2023; 14 Dai (10.1016/j.cej.2024.152183_b0170) 2021; 225 Yu (10.1016/j.cej.2024.152183_b0025) 2021; 405 Li (10.1016/j.cej.2024.152183_b0120) 2022; 103 Luo (10.1016/j.cej.2024.152183_b0095) 2017; 29 Cao (10.1016/j.cej.2024.152183_b0030) 2022; 14 10.1016/j.cej.2024.152183_b0195 Yang (10.1016/j.cej.2024.152183_b0110) 2021; 206 Li (10.1016/j.cej.2024.152183_b0125) 2021; 90 Hu (10.1016/j.cej.2024.152183_b0050) 2023; 647 Wu (10.1016/j.cej.2024.152183_b0220) 2017; 9 Mao (10.1016/j.cej.2024.152183_b0020) 2022; 427 Jung (10.1016/j.cej.2024.152183_b0100) 2014; 26 Deng (10.1016/j.cej.2024.152183_b0205) 2019; 137 Hu (10.1016/j.cej.2024.152183_b0055) 2017; 24 Guo (10.1016/j.cej.2024.152183_b0175) 2022; 247 Huang (10.1016/j.cej.2024.152183_b0165) 2017; 7 Zhang (10.1016/j.cej.2024.152183_b0235) 2018; 8 Aakyiir (10.1016/j.cej.2024.152183_b0245) 2022; 117 Yan (10.1016/j.cej.2024.152183_b0190) 2020; 2 Li (10.1016/j.cej.2024.152183_b0090) 2017; 29 Guo (10.1016/j.cej.2024.152183_b0270) 2019; 137 Zhang (10.1016/j.cej.2024.152183_b0005) 2022; 114 Hu (10.1016/j.cej.2024.152183_b0155) 2022; 14 Hu (10.1016/j.cej.2024.152183_b0285) 2019; 31 Xu (10.1016/j.cej.2024.152183_b0145) 2018; 42 Wang (10.1016/j.cej.2024.152183_b0255) 2022; 14 Li (10.1016/j.cej.2024.152183_b0135) 2019; 7 Cao (10.1016/j.cej.2024.152183_b0140) 2020; 393 Lu (10.1016/j.cej.2024.152183_b0260) 1992; 255 Cao (10.1016/j.cej.2024.152183_b0045) 2022; 16 Shen (10.1016/j.cej.2024.152183_b0015) 2021; 14 Davoodi (10.1016/j.cej.2024.152183_b0225) 2020; 14 Wu (10.1016/j.cej.2024.152183_b0275) 2023; 463 Apostolopoulou-Kalkavoura (10.1016/j.cej.2024.152183_b0280) 2021; 33 Zhang (10.1016/j.cej.2024.152183_b0160) 2021; 13 Brunner (10.1016/j.cej.2024.152183_b0180) 2004; 43 Shigeyoshi Sakaki (10.1016/j.cej.2024.152183_b0185) 1998; 17 Xu (10.1016/j.cej.2024.152183_b0150) 2019; 43 Yang (10.1016/j.cej.2024.152183_b0230) 2019; 181 Verdejo (10.1016/j.cej.2024.152183_b0200) 2008; 44 Chen (10.1016/j.cej.2024.152183_b0105) 2023 |
References_xml | – volume: 393 year: 2020 ident: b0140 article-title: One-step and green synthesis of lightweight, mechanically flexible and flame-retardant polydimethylsiloxane foam nanocomposites via surface-assembling ultralow content of graphene derivative publication-title: Chem. Eng. J. – volume: 31 year: 2019 ident: b0285 article-title: Hollow-structured materials for thermal insulation publication-title: Adv. Mater. – volume: 247 year: 2022 ident: b0175 article-title: Restricted assembly of ultralow loading of graphene oxide for lightweight, mechanically flexible and flame retardant polydimethylsiloxane foam composites publication-title: Compos. B Eng. – volume: 225 year: 2021 ident: b0170 article-title: Bamboo-inspired mechanically flexible and electrically conductive polydimethylsiloxane foam materials with designed hierarchical pore structures for ultra-sensitive and reliable piezoresistive pressure sensor publication-title: Compos. B Eng. – volume: 71 start-page: 124 year: 2021 end-page: 131 ident: b0210 article-title: Vinyl-functionalized polyborosiloxane for improving mechanical and flame-retardancy performances of silicone rubber foam composites publication-title: Polym. Int. – volume: 29 start-page: 1702675 year: 2017 ident: b0095 article-title: Hollow-structured graphene-silicone-composite-based piezoresistive sensors: decoupled property tuning and bending reliability publication-title: Adv. Mater. – volume: 14 start-page: 82 year: 2021 ident: b0015 article-title: The flame-retardant mechanisms and preparation of polymer composites and their potential application in construction engineering publication-title: Polymers – volume: 33 year: 2021 ident: b0280 article-title: Thermally insulating nanocellulose-based materials publication-title: Adv. Mater. – volume: 463 year: 2023 ident: b0275 article-title: Ultrafast high-temperature sintering of polymer-derived ceramic nanocomposites for high-temperature thin-film sensors publication-title: Chem. Eng. J. – volume: 14 start-page: 1898 year: 2022 ident: b0255 article-title: Research on the influence of extremely cold environment on the performance of silicone rubber and fluorinated silicone rubber publication-title: Polymers – volume: 54 start-page: 72 year: 2022 end-page: 82 ident: b0250 article-title: Nanograin–glass dual-phasic, elasto-flexible, fatigue-tolerant, and heat-insulating ceramic sponges at large scales publication-title: Mater. Today – volume: 14 start-page: 1497 year: 2023 end-page: 1506 ident: b0060 article-title: Carbamate thermal decarboxylation for the design of non-isocyanate polyurethane foams publication-title: Polym. Chem. – volume: 16 start-page: 20865 year: 2022 end-page: 20876 ident: b0045 article-title: Biomimetic, mechanically strong supramolecular nanosystem enabling solvent resistance, reliable fire protection and ultralong fire warning publication-title: ACS Nano – volume: 14 start-page: 1520 year: 2020 end-page: 1532 ident: b0225 article-title: 3D-printed ultra-robust surface-doped porous silicone sensors for wearable biomonitoring publication-title: ACS Nano – volume: 5 start-page: 16467 year: 2017 end-page: 16497 ident: b0085 article-title: Recent progress in fabrication and application of polydimethylsiloxane sponges publication-title: J. Mater. Chem. A – volume: 44 start-page: 2790 year: 2008 end-page: 2797 ident: b0200 article-title: Physical properties of silicone foams filled with carbon nanotubes and functionalized graphene sheets publication-title: Eur. Polym. J. – volume: 427 year: 2022 ident: b0020 article-title: Facile and green fabrication of flame-retardant Ti publication-title: Chem. Eng. J. – volume: 2 start-page: 1634 year: 2020 end-page: 1643 ident: b0190 article-title: Thiol oxidative coupling synthesis of silicone foams for oil/water separation publication-title: ACS Appl. Polym. Mater. – volume: 8 start-page: 9901 year: 2018 end-page: 9909 ident: b0235 article-title: Thermal insulation and stability of polysiloxane foams containing hydroxyl-terminated polydimethylsiloxanes publication-title: RSC Adv. – reference: J. Gao, J. Wang, H. Xu, C. Wu, Preparation and properties of hollow glass bead filled silicone rubber foams with low thermal conductivity, Mater. Design (1980-2015) 46 (2013) 491–496. https://doi.org/10.1016/j.matdes.2012.08.070. – volume: 24 start-page: 80 year: 2017 ident: b0055 article-title: Green synthesis process and properties of polyurethane completely using ethanol as solvent publication-title: J. Polym. Res. – volume: 181 year: 2019 ident: b0230 article-title: Light-weight and flexible silicone rubber/MWCNTs/Fe publication-title: Compos. Sci. Technol. – volume: 29 start-page: 1900469 year: 2019 ident: b0070 article-title: 3D printed multifunctional, hyperelastic silicone rubber foam publication-title: Adv. Funct. Mater. – start-page: e2309272 year: 2023 ident: b0080 article-title: Hydrosilylation adducts to produce wide-temperature flexible polysiloxane aerogel under ambient temperature and pressure drying publication-title: Small – volume: 7 start-page: 22045 year: 2017 end-page: 22053 ident: b0165 article-title: Efficient interfacial interaction for improving mechanical properties of polydimethylsiloxane nanocomposites filled with low content of graphene oxide nanoribbons publication-title: RSC Adv. – volume: 42 start-page: 13873 year: 2018 end-page: 13883 ident: b0145 article-title: Preparation of dual-functionalized graphene oxide for the improvement of the thermal stability and flame-retardant properties of polysiloxane foam publication-title: New J. Chem. – volume: 7 start-page: 10479 year: 2017 end-page: 10486 ident: b0215 article-title: Moldable clay-like unit for synthesis of highly elastic polydimethylsiloxane sponge with nanofiller modification publication-title: RSC Adv. – volume: 206 year: 2021 ident: b0110 article-title: Heterogeneous silicon rubber composite foam with gradient porous structure for highly absorbed ultra-efficient electromagnetic interference shielding publication-title: Compos. Sci. Technol. – volume: 43 start-page: 6136 year: 2019 end-page: 6145 ident: b0150 article-title: Fabrication of polysiloxane foam with a pendent phenyl group for improved thermal insulation capacity and thermal stability publication-title: New J. Chem. – volume: 405 year: 2021 ident: b0025 article-title: Facile and green synthesis of mechanically flexible and flame-retardant clay/graphene oxide nanoribbon interconnected networks for fire safety and prevention publication-title: Chem. Eng. J. – volume: 90 year: 2021 ident: b0125 article-title: Environmentally stable, mechanically flexible, self-adhesive, and electrically conductive Ti3C2TX MXene hydrogels for wide-temperature strain sensing publication-title: Nano Energy – volume: 7 start-page: 27032 year: 2019 end-page: 27040 ident: b0135 article-title: In situ reactive self-assembly of a graphene oxide nano-coating in polymer foam materials with synergistic fire shielding properties publication-title: J. Mater. Chem. A – volume: 9 start-page: 14207 year: 2017 end-page: 14215 ident: b0220 article-title: Novel electrically conductive porous PDMS/carbon nanofiber composites for deformable strain sensors and conductors publication-title: ACS Appl. Mater. Interfaces – volume: 13 start-page: 23161 year: 2021 end-page: 23172 ident: b0160 article-title: Ultrafast flame-induced pyrolysis of poly(dimethylsiloxane) foam materials toward exceptional superhydrophobic surfaces and reliable mechanical robustness publication-title: ACS Appl. Mater. Interfaces – volume: 255 start-page: 971 year: 1992 end-page: 972 ident: b0260 article-title: Thermal conductivity of monolithic organic aerogels publication-title: Science – start-page: 2304927 year: 2023 ident: b0105 article-title: Self-adhesive polydimethylsiloxane foam materials decorated with MXene/cellulose nanofiber interconnected network for versatile functionalities publication-title: Adv. Funct. Mater. – volume: 13 start-page: 23020 year: 2021 end-page: 23029 ident: b0035 article-title: Multifunctional MXene/Chitosan-coated cotton fabric for intelligent fire protection publication-title: ACS Appl. Mater. Interfaces – volume: 26 year: 2022 ident: b0130 article-title: Facile synthesis of mechanically flexible and super-hydrophobic silicone aerogels with tunable pore structure for efficient oil-water separation publication-title: Mater. Today Chem. – volume: 117 start-page: 174 year: 2022 end-page: 182 ident: b0245 article-title: 3D printing interface-modified PDMS/MXene nanocomposites for stretchable conductors publication-title: J. Mater. Sci. Technol. – volume: 29 start-page: 1700898 year: 2017 ident: b0090 article-title: An all-stretchable-component sodium-ion full battery publication-title: Adv. Mater. – volume: 14 start-page: 92 year: 2022 ident: b0030 article-title: Fire intumescent, high-temperature resistant, mechanically flexible graphene oxide network for exceptional fire shielding and ultra-fast fire warning publication-title: Nanomicro Lett. – volume: 37 year: 2023 ident: b0075 article-title: Silane modified MXene/polybenzazole nanocomposite aerogels with exceptional surface hydrophobicity, flame retardance and thermal insulation publication-title: Compos. Commun. – volume: 26 start-page: 4825 year: 2014 end-page: 4830 ident: b0100 article-title: Reverse-micelle-induced porous pressure-sensitive rubber for wearable human-machine interfaces publication-title: Adv. Mater. – volume: 17 start-page: 2510 year: 1998 end-page: 2523 ident: b0185 article-title: Theoretical study of platinum(0)-catalyzed hydrosilylation of ethylene. Chalk-Harrod mechanism or modified chalk-harrod mechanism publication-title: Organometallics – volume: 137 start-page: 64 year: 2019 end-page: 73 ident: b0270 article-title: A theoretical model for gas-contributed thermal conductivity in nanoporous aerogels publication-title: Int. J. Heat Mass Transf. – volume: 150 year: 2022 ident: b0040 article-title: Smart fire-warning materials and sensors: Design principle, performances, and applications publication-title: Mater. Sci. Eng. R. Rep. – volume: 14 start-page: 1628 year: 2022 ident: b0155 article-title: Green and rapid preparation of fluorosilicone rubber foam materials with tunable chemical resistance for efficient oil-water separation publication-title: Polymers – start-page: 1 year: 2023 end-page: 8 ident: b0115 article-title: Lightweight and flame retardant fluorosilicone rubber composited foam prepared by supercritical nitrogen publication-title: J. Vinyl Add. Tech. – volume: 137 start-page: 47679 year: 2019 ident: b0205 article-title: Effects of platinum compounds/superfine aluminum hydroxide/ultrafine calcium carbonate on the flame retardation and smoke suppression of silicone foams publication-title: J. Appl. Polym. Sci. – volume: 103 year: 2022 ident: b0120 article-title: Mechanically ductile, ionically conductive and low-temperature tolerant hydrogel enabled by high-concentration saline towards flexible strain sensor publication-title: Nano Energy – volume: 43 start-page: 2749 year: 2004 end-page: 2750 ident: b0180 article-title: A new hydrosilylation mechanism—new preparative opportunities publication-title: Angew. Chem. Int. Ed. – reference: R. Verdejo, F. Barroso-Bujans, M.A. Rodriguez-Perez, A. Jose, M. Arroyo, M.A.J.J.o.M.C. Lopez-Manchado, Carbon nanotubes provide self-extinguishing grade to silicone-based foams, J. Mater. Chem. 18(33) (2008) 3933-3939. https://doi.org/10.1039/B805943H. – volume: 15 start-page: 953 year: 2023 ident: b0010 article-title: Construction sheets made of high-performance flame-retardant nonwoven fabrics and combustion-resistant polyurethane foam: preparation process and property evaluations publication-title: Polymers – volume: 29 start-page: 2261 year: 1994 end-page: 2273 ident: b0265 article-title: An assessment of expressions for the apparent thermal conductivity of cellular materials publication-title: J. Mater. Sci. – volume: 145 year: 2021 ident: b0065 article-title: Structure-properties relationships of cellular materials from biobased polyurethane foams publication-title: Mater. Sci. Eng. R. Rep. – volume: 114 start-page: 131 year: 2022 end-page: 142 ident: b0005 article-title: Silicone/graphene oxide co-cross-linked aerogels with wide-temperature mechanical flexibility, super-hydrophobicity and flame resistance for exceptional thermal insulation and oil/water separation publication-title: J. Mater. Sci. Technol. – volume: 647 start-page: 467 year: 2023 end-page: 477 ident: b0050 article-title: Intelligent cyclic fire warning sensor based on hybrid PBO nanofiber and montmorillonite nanocomposite papers decorated with phenyltriethoxysilane publication-title: J. Colloid Interface Sci. – volume: 16 start-page: 20865 issue: 12 year: 2022 ident: 10.1016/j.cej.2024.152183_b0045 article-title: Biomimetic, mechanically strong supramolecular nanosystem enabling solvent resistance, reliable fire protection and ultralong fire warning publication-title: ACS Nano doi: 10.1021/acsnano.2c08368 – volume: 24 start-page: 80 issue: 5 year: 2017 ident: 10.1016/j.cej.2024.152183_b0055 article-title: Green synthesis process and properties of polyurethane completely using ethanol as solvent publication-title: J. Polym. Res. doi: 10.1007/s10965-017-1240-5 – volume: 2 start-page: 1634 issue: 4 year: 2020 ident: 10.1016/j.cej.2024.152183_b0190 article-title: Thiol oxidative coupling synthesis of silicone foams for oil/water separation publication-title: ACS Appl. Polym. Mater. doi: 10.1021/acsapm.0c00071 – volume: 54 start-page: 72 year: 2022 ident: 10.1016/j.cej.2024.152183_b0250 article-title: Nanograin–glass dual-phasic, elasto-flexible, fatigue-tolerant, and heat-insulating ceramic sponges at large scales publication-title: Mater. Today doi: 10.1016/j.mattod.2022.02.007 – volume: 5 start-page: 16467 issue: 32 year: 2017 ident: 10.1016/j.cej.2024.152183_b0085 article-title: Recent progress in fabrication and application of polydimethylsiloxane sponges publication-title: J. Mater. Chem. A doi: 10.1039/C7TA04577H – volume: 7 start-page: 10479 issue: 17 year: 2017 ident: 10.1016/j.cej.2024.152183_b0215 article-title: Moldable clay-like unit for synthesis of highly elastic polydimethylsiloxane sponge with nanofiller modification publication-title: RSC Adv. doi: 10.1039/C6RA26701G – volume: 14 start-page: 1628 issue: 8 year: 2022 ident: 10.1016/j.cej.2024.152183_b0155 article-title: Green and rapid preparation of fluorosilicone rubber foam materials with tunable chemical resistance for efficient oil-water separation publication-title: Polymers doi: 10.3390/polym14081628 – volume: 26 start-page: 4825 issue: 28 year: 2014 ident: 10.1016/j.cej.2024.152183_b0100 article-title: Reverse-micelle-induced porous pressure-sensitive rubber for wearable human-machine interfaces publication-title: Adv. Mater. doi: 10.1002/adma.201401364 – volume: 427 year: 2022 ident: 10.1016/j.cej.2024.152183_b0020 article-title: Facile and green fabrication of flame-retardant Ti3C2Tx MXene networks for ultrafast, reusable and weather-resistant fire warning publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131615 – volume: 7 start-page: 27032 issue: 47 year: 2019 ident: 10.1016/j.cej.2024.152183_b0135 article-title: In situ reactive self-assembly of a graphene oxide nano-coating in polymer foam materials with synergistic fire shielding properties publication-title: J. Mater. Chem. A doi: 10.1039/C9TA09372A – volume: 37 year: 2023 ident: 10.1016/j.cej.2024.152183_b0075 article-title: Silane modified MXene/polybenzazole nanocomposite aerogels with exceptional surface hydrophobicity, flame retardance and thermal insulation publication-title: Compos. Commun. doi: 10.1016/j.coco.2022.101402 – volume: 29 start-page: 1900469 issue: 23 year: 2019 ident: 10.1016/j.cej.2024.152183_b0070 article-title: 3D printed multifunctional, hyperelastic silicone rubber foam publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201900469 – volume: 71 start-page: 124 issue: 1 year: 2021 ident: 10.1016/j.cej.2024.152183_b0210 article-title: Vinyl-functionalized polyborosiloxane for improving mechanical and flame-retardancy performances of silicone rubber foam composites publication-title: Polym. Int. doi: 10.1002/pi.6292 – volume: 181 year: 2019 ident: 10.1016/j.cej.2024.152183_b0230 article-title: Light-weight and flexible silicone rubber/MWCNTs/Fe3O4 nanocomposite foams for efficient electromagnetic interference shielding and microwave absorption publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2019.05.027 – volume: 206 year: 2021 ident: 10.1016/j.cej.2024.152183_b0110 article-title: Heterogeneous silicon rubber composite foam with gradient porous structure for highly absorbed ultra-efficient electromagnetic interference shielding publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2021.108663 – volume: 33 issue: 28 year: 2021 ident: 10.1016/j.cej.2024.152183_b0280 article-title: Thermally insulating nanocellulose-based materials publication-title: Adv. Mater. doi: 10.1002/adma.202001839 – volume: 31 issue: 38 year: 2019 ident: 10.1016/j.cej.2024.152183_b0285 article-title: Hollow-structured materials for thermal insulation publication-title: Adv. Mater. doi: 10.1002/adma.201801001 – volume: 13 start-page: 23161 issue: 19 year: 2021 ident: 10.1016/j.cej.2024.152183_b0160 article-title: Ultrafast flame-induced pyrolysis of poly(dimethylsiloxane) foam materials toward exceptional superhydrophobic surfaces and reliable mechanical robustness publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c03272 – volume: 137 start-page: 64 year: 2019 ident: 10.1016/j.cej.2024.152183_b0270 article-title: A theoretical model for gas-contributed thermal conductivity in nanoporous aerogels publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2019.03.106 – volume: 463 year: 2023 ident: 10.1016/j.cej.2024.152183_b0275 article-title: Ultrafast high-temperature sintering of polymer-derived ceramic nanocomposites for high-temperature thin-film sensors publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.142518 – volume: 114 start-page: 131 year: 2022 ident: 10.1016/j.cej.2024.152183_b0005 article-title: Silicone/graphene oxide co-cross-linked aerogels with wide-temperature mechanical flexibility, super-hydrophobicity and flame resistance for exceptional thermal insulation and oil/water separation publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2021.11.012 – volume: 7 start-page: 22045 issue: 36 year: 2017 ident: 10.1016/j.cej.2024.152183_b0165 article-title: Efficient interfacial interaction for improving mechanical properties of polydimethylsiloxane nanocomposites filled with low content of graphene oxide nanoribbons publication-title: RSC Adv. doi: 10.1039/C7RA02439H – volume: 145 year: 2021 ident: 10.1016/j.cej.2024.152183_b0065 article-title: Structure-properties relationships of cellular materials from biobased polyurethane foams publication-title: Mater. Sci. Eng. R. Rep. doi: 10.1016/j.mser.2021.100608 – volume: 117 start-page: 174 year: 2022 ident: 10.1016/j.cej.2024.152183_b0245 article-title: 3D printing interface-modified PDMS/MXene nanocomposites for stretchable conductors publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2021.11.048 – ident: 10.1016/j.cej.2024.152183_b0195 doi: 10.1039/b805943h – volume: 29 start-page: 1700898 issue: 23 year: 2017 ident: 10.1016/j.cej.2024.152183_b0090 article-title: An all-stretchable-component sodium-ion full battery publication-title: Adv. Mater. doi: 10.1002/adma.201700898 – volume: 42 start-page: 13873 issue: 16 year: 2018 ident: 10.1016/j.cej.2024.152183_b0145 article-title: Preparation of dual-functionalized graphene oxide for the improvement of the thermal stability and flame-retardant properties of polysiloxane foam publication-title: New J. Chem. doi: 10.1039/C8NJ02361A – volume: 26 year: 2022 ident: 10.1016/j.cej.2024.152183_b0130 article-title: Facile synthesis of mechanically flexible and super-hydrophobic silicone aerogels with tunable pore structure for efficient oil-water separation publication-title: Mater. Today Chem. – volume: 14 start-page: 82 issue: 1 year: 2021 ident: 10.1016/j.cej.2024.152183_b0015 article-title: The flame-retardant mechanisms and preparation of polymer composites and their potential application in construction engineering publication-title: Polymers doi: 10.3390/polym14010082 – volume: 14 start-page: 92 issue: 1 year: 2022 ident: 10.1016/j.cej.2024.152183_b0030 article-title: Fire intumescent, high-temperature resistant, mechanically flexible graphene oxide network for exceptional fire shielding and ultra-fast fire warning publication-title: Nanomicro Lett. – start-page: 1 year: 2023 ident: 10.1016/j.cej.2024.152183_b0115 article-title: Lightweight and flame retardant fluorosilicone rubber composited foam prepared by supercritical nitrogen publication-title: J. Vinyl Add. Tech. – volume: 647 start-page: 467 year: 2023 ident: 10.1016/j.cej.2024.152183_b0050 article-title: Intelligent cyclic fire warning sensor based on hybrid PBO nanofiber and montmorillonite nanocomposite papers decorated with phenyltriethoxysilane publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2023.05.119 – volume: 17 start-page: 2510 year: 1998 ident: 10.1016/j.cej.2024.152183_b0185 article-title: Theoretical study of platinum(0)-catalyzed hydrosilylation of ethylene. Chalk-Harrod mechanism or modified chalk-harrod mechanism publication-title: Organometallics doi: 10.1021/om980190a – volume: 43 start-page: 2749 issue: 21 year: 2004 ident: 10.1016/j.cej.2024.152183_b0180 article-title: A new hydrosilylation mechanism—new preparative opportunities publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200301742 – volume: 247 year: 2022 ident: 10.1016/j.cej.2024.152183_b0175 article-title: Restricted assembly of ultralow loading of graphene oxide for lightweight, mechanically flexible and flame retardant polydimethylsiloxane foam composites publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2022.110290 – volume: 29 start-page: 2261 year: 1994 ident: 10.1016/j.cej.2024.152183_b0265 article-title: An assessment of expressions for the apparent thermal conductivity of cellular materials publication-title: J. Mater. Sci. doi: 10.1007/BF00363413 – volume: 9 start-page: 14207 issue: 16 year: 2017 ident: 10.1016/j.cej.2024.152183_b0220 article-title: Novel electrically conductive porous PDMS/carbon nanofiber composites for deformable strain sensors and conductors publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b00847 – volume: 44 start-page: 2790 issue: 9 year: 2008 ident: 10.1016/j.cej.2024.152183_b0200 article-title: Physical properties of silicone foams filled with carbon nanotubes and functionalized graphene sheets publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2008.06.033 – volume: 225 year: 2021 ident: 10.1016/j.cej.2024.152183_b0170 article-title: Bamboo-inspired mechanically flexible and electrically conductive polydimethylsiloxane foam materials with designed hierarchical pore structures for ultra-sensitive and reliable piezoresistive pressure sensor publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2021.109243 – volume: 137 start-page: 47679 issue: 1 year: 2019 ident: 10.1016/j.cej.2024.152183_b0205 article-title: Effects of platinum compounds/superfine aluminum hydroxide/ultrafine calcium carbonate on the flame retardation and smoke suppression of silicone foams publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.47679 – volume: 14 start-page: 1497 issue: 13 year: 2023 ident: 10.1016/j.cej.2024.152183_b0060 article-title: Carbamate thermal decarboxylation for the design of non-isocyanate polyurethane foams publication-title: Polym. Chem. doi: 10.1039/D3PY00096F – volume: 14 start-page: 1898 issue: 9 year: 2022 ident: 10.1016/j.cej.2024.152183_b0255 article-title: Research on the influence of extremely cold environment on the performance of silicone rubber and fluorinated silicone rubber publication-title: Polymers doi: 10.3390/polym14091898 – volume: 15 start-page: 953 issue: 4 year: 2023 ident: 10.1016/j.cej.2024.152183_b0010 article-title: Construction sheets made of high-performance flame-retardant nonwoven fabrics and combustion-resistant polyurethane foam: preparation process and property evaluations publication-title: Polymers doi: 10.3390/polym15040953 – start-page: e2309272 year: 2023 ident: 10.1016/j.cej.2024.152183_b0080 article-title: Hydrosilylation adducts to produce wide-temperature flexible polysiloxane aerogel under ambient temperature and pressure drying publication-title: Small – volume: 405 year: 2021 ident: 10.1016/j.cej.2024.152183_b0025 article-title: Facile and green synthesis of mechanically flexible and flame-retardant clay/graphene oxide nanoribbon interconnected networks for fire safety and prevention publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126620 – volume: 255 start-page: 971 year: 1992 ident: 10.1016/j.cej.2024.152183_b0260 article-title: Thermal conductivity of monolithic organic aerogels publication-title: Science doi: 10.1126/science.255.5047.971 – volume: 150 year: 2022 ident: 10.1016/j.cej.2024.152183_b0040 article-title: Smart fire-warning materials and sensors: Design principle, performances, and applications publication-title: Mater. Sci. Eng. R. Rep. doi: 10.1016/j.mser.2022.100690 – volume: 90 year: 2021 ident: 10.1016/j.cej.2024.152183_b0125 article-title: Environmentally stable, mechanically flexible, self-adhesive, and electrically conductive Ti3C2TX MXene hydrogels for wide-temperature strain sensing publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106502 – volume: 393 year: 2020 ident: 10.1016/j.cej.2024.152183_b0140 article-title: One-step and green synthesis of lightweight, mechanically flexible and flame-retardant polydimethylsiloxane foam nanocomposites via surface-assembling ultralow content of graphene derivative publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124724 – volume: 43 start-page: 6136 issue: 16 year: 2019 ident: 10.1016/j.cej.2024.152183_b0150 article-title: Fabrication of polysiloxane foam with a pendent phenyl group for improved thermal insulation capacity and thermal stability publication-title: New J. Chem. doi: 10.1039/C9NJ00782B – start-page: 2304927 year: 2023 ident: 10.1016/j.cej.2024.152183_b0105 article-title: Self-adhesive polydimethylsiloxane foam materials decorated with MXene/cellulose nanofiber interconnected network for versatile functionalities publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202304927 – volume: 29 start-page: 1702675 issue: 40 year: 2017 ident: 10.1016/j.cej.2024.152183_b0095 article-title: Hollow-structured graphene-silicone-composite-based piezoresistive sensors: decoupled property tuning and bending reliability publication-title: Adv. Mater. doi: 10.1002/adma.201702675 – volume: 103 year: 2022 ident: 10.1016/j.cej.2024.152183_b0120 article-title: Mechanically ductile, ionically conductive and low-temperature tolerant hydrogel enabled by high-concentration saline towards flexible strain sensor publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107789 – volume: 13 start-page: 23020 issue: 19 year: 2021 ident: 10.1016/j.cej.2024.152183_b0035 article-title: Multifunctional MXene/Chitosan-coated cotton fabric for intelligent fire protection publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c05222 – ident: 10.1016/j.cej.2024.152183_b0240 doi: 10.1016/j.matdes.2012.08.070 – volume: 8 start-page: 9901 issue: 18 year: 2018 ident: 10.1016/j.cej.2024.152183_b0235 article-title: Thermal insulation and stability of polysiloxane foams containing hydroxyl-terminated polydimethylsiloxanes publication-title: RSC Adv. doi: 10.1039/C8RA00222C – volume: 14 start-page: 1520 issue: 2 year: 2020 ident: 10.1016/j.cej.2024.152183_b0225 article-title: 3D-printed ultra-robust surface-doped porous silicone sensors for wearable biomonitoring publication-title: ACS Nano doi: 10.1021/acsnano.9b06283 |
SSID | ssj0006919 |
Score | 2.532992 |
Snippet | •Introducing phenyl groups onto Si–O–Si chains can tailor the foaming and cross-linking match.•The lowest density of the optimized PhSiRF material is as light... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 152183 |
SubjectTerms | Phenyl group Silicone foam material Thermal insulation Tunable pore structure Wide-temperature flexibility |
Title | Large-scale and facile fabrication of phenyl-containing silicone foam materials with lightweight, wide-temperature flexibility and tunable pore structure for exceptional thermal insulation |
URI | https://dx.doi.org/10.1016/j.cej.2024.152183 |
Volume | 492 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV25TsQwELUQNFAgTnHLBRXCbBI7a6dECLSwQMEh6CLHh7Ro2UWwCGj4Mj6OGcfhkICCykoyVo6Z2M_28xtCNoVMlC1gkJP5tsUtOY5V3AtmM5dym0JEO9wofHLa7lyKo-v8eozsNXthkFYZ2_66TQ-tdTzTil-zddfrtc5TXNMqhERFubYMgpJCSIzynddPmke7CMk90JihdbOyGThext3AEDETmAUoVfznvulLf3MwQ6YjUKS79bPMkjE3mCNTX-QD58nbMdK42QN8Zkf1wFKvDfzkUFT3cSqODj1FFtdLnyEpvU4HQR96fQiAAVgO9S0FzFqHIcVJWdrH4fpTmDHdhjPWMZSvitrL1KOAZiDUvoRbjh7D5isKMN7RWow2mA3vqXuOlBl4DYSZt1AG6nt4sgVyebB_sddhMRsDM1khR4xzg6vV1kifWKcKnSXOeS-l4pW23igH6MkaK6HHzyrAmUYBVNKCG5PBsEnzRTI-gFdbIjTXyki4nKVGiaKSKpHO5lwDNk1Sn5tlkjR-KE2UKseMGf2y4aTdlOC6El1X1q5bJlsfVe5qnY6_jEXj3PJbsJXQj_xebeV_1VbJJB7hhHCar5FxcIVbByQzqjZCqG6Qid3DbucUy-7ZVfcd-Ob5KA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iB_UgPvFtDp7EuG2TbtKjiLLq6kUFbyXNA1bWXdEV9eIv88c5k6Y-QD14KqQT-phJ8iX58g0h20ImyhYwycl82-KRHMcq7gWzmUu5TSGiHR4UPjtvd67EyXV-PUYOmrMwSKuMfX_dp4feOpa04t9s3fV6rYsU97QKIVFRri1RUHJCQPPFNAZ7r588j3YRsnugNUPzZmszkLyMu4E5YiYwDVCq-M-D05cB52iWzESkSPfrl5kjY24wT6a_6AcukLcu8rjZA_xnR_XAUq8NtHK4VPdxLY4OPUUa10ufISu9zgdBH3p9iIABWA71LQXQWschxVVZ2sf5-lNYMt2FEusY6ldF8WXqUUEzMGpfwiNHj-H0FQUc72itRhvMhvfUPUfODHwG4sxbuAbue3izRXJ1dHh50GExHQMzWSFHjHOD29XWSJ9YpwqdJc55L6XilbbeKAfwyRorYcjPKgCaRgFW0oIbk8G8SfMlMj6AT1smNNfKSLidpUaJopIqkc7mXAM4TVKfmxWSNH4oTdQqx5QZ_bIhpd2U4LoSXVfWrlshOx9V7mqhjr-MRePc8lu0lTCQ_F5t9X_Vtshk5_KsW3aPz0_XyBTewdXhNF8n4-AWtwGwZlRthrB9B9dN-RM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-scale+and+facile+fabrication+of+phenyl-containing+silicone+foam+materials+with+lightweight%2C+wide-temperature+flexibility+and+tunable+pore+structure+for+exceptional+thermal+insulation&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Wu%2C+Yu-Yue&rft.au=Wu%2C+Zhi-Hao&rft.au=Chen%2C+Zuan-Yu&rft.au=Peng%2C+Li-Dong&rft.date=2024-07-15&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.volume=492&rft_id=info:doi/10.1016%2Fj.cej.2024.152183&rft.externalDocID=S1385894724036702 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |