User-Friendly and Responsive Electrochemical Detection Approach for Triclosan by Nano-Metal–Organic Framework

Antimicrobial resistance poses a significant challenge to public health, and is worsened by the widespread misuse of antimicrobial agents such as triclosan (TCS) in personal care and household products. Leveraging the electrochemical reactivity of TCS’s phenolic hydroxyl group, this study investigat...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 29; no. 14; p. 3298
Main Authors Li, Xiaoyu, Zhang, Gaocheng, Zuhra, Zareen, Wang, Shengxiang
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 12.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Antimicrobial resistance poses a significant challenge to public health, and is worsened by the widespread misuse of antimicrobial agents such as triclosan (TCS) in personal care and household products. Leveraging the electrochemical reactivity of TCS’s phenolic hydroxyl group, this study investigates the electrochemical behavior of TCS on a Cu-based nano-metal–organic framework (Cu-BTC) surface. The synthesis of Cu-BTC via a room temperature solvent method, with triethylamine as a regulator, ensures uniform nanoparticle formation. The electrochemical properties of Cu-BTC and the signal enhancement mechanism are comprehensively examined. Utilizing the signal amplification effect of Cu-BTC, an electrochemical sensor for TCS detection is developed and optimized using response surface methodology. The resulting method offers a simple, rapid, and highly sensitive detection of TCS, with a linear range of 25–10,000 nM and a detection limit of 25 nM. This research highlights the potential of Cu-BTC as a promising material for electrochemical sensing applications, contributing to advancements in environmental monitoring and public health protection.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules29143298