Stardust: Accessible and Transparent GPU Support for Information Visualization Rendering

Web‐based visualization libraries are in wide use, but performance bottlenecks occur when rendering, and especially animating, a large number of graphical marks. While GPU‐based rendering can drastically improve performance, that paradigm has a steep learning curve, usually requiring expertise in th...

Full description

Saved in:
Bibliographic Details
Published inComputer graphics forum Vol. 36; no. 3; pp. 179 - 188
Main Authors Ren, Donghao, Lee, Bongshin, Höllerer, Tobias
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.06.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Web‐based visualization libraries are in wide use, but performance bottlenecks occur when rendering, and especially animating, a large number of graphical marks. While GPU‐based rendering can drastically improve performance, that paradigm has a steep learning curve, usually requiring expertise in the computer graphics pipeline and shader programming. In addition, the recent growth of virtual and augmented reality poses a challenge for supporting multiple display environments beyond regular canvases, such as a Head Mounted Display (HMD) and Cave Automatic Virtual Environment (CAVE). In this paper, we introduce a new web‐based visualization library called Stardust, which provides a familiar API while leveraging GPU's processing power. Stardust also enables developers to create both 2D and 3D visualizations for diverse display environments using a uniform API. To demonstrate Stardust's expressiveness and portability, we present five example visualizations and a coding playground for four display environments. We also evaluate its performance by comparing it against the standard HTML5 Canvas, D3, and Vega.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0167-7055
1467-8659
DOI:10.1111/cgf.13178