A novel numerical manner for two‐dimensional space fractional diffusion equation arising in transport phenomena

Fractional diffusion equations include a consistent and efficient explanation of transport phenomena that manifest abnormal diffusion, that cannot be often represented by second‐order diffusion equations. In this article, a two‐dimensional space fractional diffusion equation (SFDE‐2D) with nonhomoge...

Full description

Saved in:
Bibliographic Details
Published inNumerical methods for partial differential equations Vol. 37; no. 2; pp. 1397 - 1406
Main Authors Tuan, Nguyen H., Aghdam, Yones Esmaeelzadeh, Jafari, Hossein, Mesgarani, Hamid
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.03.2021
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Fractional diffusion equations include a consistent and efficient explanation of transport phenomena that manifest abnormal diffusion, that cannot be often represented by second‐order diffusion equations. In this article, a two‐dimensional space fractional diffusion equation (SFDE‐2D) with nonhomogeneous and homogeneous boundary conditions is considered in Caputo derivative sense. An instant and nevertheless accurate scheme is obtained by the finite‐difference discretization to get the semidiscrete in temporal derivative with convergence order O(δτ2). Moreover, space fractional derivative can be approximated based on the Chebyshev polynomials of second kind which are powerful methods for basing the operational matrix. The convergence and stability of the proposed scheme are discussed theoretically in detail. Finally, two numerical problems with an exact solution are given that numerical results show the effectiveness of the new techniques. These schemes can be simply extended to three spatial dimensions, which will be the subject of our subsequent research.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0749-159X
1098-2426
DOI:10.1002/num.22586