The density of odontocete integument depends on blubber lipid composition and temperature

Cetacean integument serves many functional roles, including contribution to whole body buoyancy. The blubber of the integument of different cetacean species contains varying concentrations of triacylglycerols (TAG) and wax esters (WE); generally, these lipid classes have different densities. Integum...

Full description

Saved in:
Bibliographic Details
Published inMarine mammal science Vol. 35; no. 2; pp. 595 - 616
Main Authors Lonati, Gina L., Singleton, Emily M., Phelps, Caitlin E., Koopman, Heather N., Pabst, D. Ann
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.04.2019
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cetacean integument serves many functional roles, including contribution to whole body buoyancy. The blubber of the integument of different cetacean species contains varying concentrations of triacylglycerols (TAG) and wax esters (WE); generally, these lipid classes have different densities. Integument can also experience a wide range of temperatures during a dive, so its density may change with depth. The goals of this study were to measure integument density and isolated blubber lipid density in three deep‐diving odontocete species (n = 3–4)—short‐finned pilot whales (Globicephala macrorhynchus), pygmy sperm whales (Kogia breviceps), and Gervais' beaked whales (Mesoplodon europeaus)—at different temperatures (6°C–35°C), and to relate these densities to lipid content and composition. Kogia and Mesoplodon integument and isolated lipids had high WE content (78.7–99.5 wt%) and were less dense (by 1.7%–9.3%) than those of Globicephala, which were composed predominately of TAG. Generally, densities increased as temperature decreased. Changes in integument densities mirrored those of isolated lipid densities, suggesting that blubber lipids are largely responsible for the buoyant properties of cetacean integument. These data demonstrate that the contribution of the integument to whole body density depends on lipid class and temperature, and therefore may provide useful, species‐specific correction factors for diving energetics models.
ISSN:0824-0469
1748-7692
DOI:10.1111/mms.12554