Oui! Outlier Interpretation on Multi‐dimensional Data via Visual Analytics

Outliers, the data instances that do not conform with normal patterns in a dataset, are widely studied in various domains, such as cybersecurity, social analysis, and public health. By detecting and analyzing outliers, users can either gain insights into abnormal patterns or purge the data of errors...

Full description

Saved in:
Bibliographic Details
Published inComputer graphics forum Vol. 38; no. 3; pp. 213 - 224
Main Authors Zhao, Xun, Cui, Weiwei, Wu, Yanhong, Zhang, Haidong, Qu, Huamin, Zhang, Dongmei
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Outliers, the data instances that do not conform with normal patterns in a dataset, are widely studied in various domains, such as cybersecurity, social analysis, and public health. By detecting and analyzing outliers, users can either gain insights into abnormal patterns or purge the data of errors. However, different domains usually have different considerations with respect to outliers. Understanding the defining characteristics of outliers is essential for users to select and filter appropriate outliers based on their domain requirements. Unfortunately, most existing work focuses on the efficiency and accuracy of outlier detection, neglecting the importance of outlier interpretation. To address these issues, we propose Oui, a visual analytic system that helps users understand, interpret, and select the outliers detected by various algorithms. We also present a usage scenario on a real dataset and a qualitative user study to demonstrate the effectiveness and usefulness of our system.
AbstractList Outliers, the data instances that do not conform with normal patterns in a dataset, are widely studied in various domains, such as cybersecurity, social analysis, and public health. By detecting and analyzing outliers, users can either gain insights into abnormal patterns or purge the data of errors. However, different domains usually have different considerations with respect to outliers. Understanding the defining characteristics of outliers is essential for users to select and filter appropriate outliers based on their domain requirements. Unfortunately, most existing work focuses on the efficiency and accuracy of outlier detection, neglecting the importance of outlier interpretation. To address these issues, we propose Oui, a visual analytic system that helps users understand, interpret, and select the outliers detected by various algorithms. We also present a usage scenario on a real dataset and a qualitative user study to demonstrate the effectiveness and usefulness of our system.
Author Zhang, Dongmei
Zhao, Xun
Qu, Huamin
Cui, Weiwei
Wu, Yanhong
Zhang, Haidong
Author_xml – sequence: 1
  givenname: Xun
  surname: Zhao
  fullname: Zhao, Xun
  organization: Microsoft Research Asia
– sequence: 2
  givenname: Weiwei
  surname: Cui
  fullname: Cui, Weiwei
  organization: Microsoft Research Asia
– sequence: 3
  givenname: Yanhong
  surname: Wu
  fullname: Wu, Yanhong
  organization: Visa Research
– sequence: 4
  givenname: Haidong
  surname: Zhang
  fullname: Zhang, Haidong
  organization: Microsoft Research Asia
– sequence: 5
  givenname: Huamin
  surname: Qu
  fullname: Qu, Huamin
  organization: The Hong Kong University of Science and Technology
– sequence: 6
  givenname: Dongmei
  surname: Zhang
  fullname: Zhang, Dongmei
  organization: Microsoft Research Asia
BookMark eNp1kE1OwzAQhS1UJNrCghsEsWKR1k4c_yyrQkulom6AreUmE-QqTYrtgLrjCJyRk-CSrhCMLM149L0n-w1Qr25qQOiS4BEJNc5fyhFJmUhPUJ9QxmPBMtlDfUzCzHGWnaGBcxuMMeUs66PlqjVX0ar1lQEbLWoPdmfBa2-aOgrnoa28-fr4LMwWaheWuoputdfRm9HRs3FtuE_Ccu9N7s7RaakrBxfHPkRPs7vH6X28XM0X08kyzhPJ05gVJQMpCAguKC_FmmgKUmOpIS-koCWjGKBYSywpX8sAaJloDWlJqUh1lg7Rdee7s81rC86rTdPa8AqnkoRJig9RBGrcUbltnLNQqtx0H_NWm0oRrA6cCpGpn8iC4uaXYmfNVtv9n-zR_d1UsP8fVNP5rFN8A5Y_fgE
CitedBy_id crossref_primary_10_1109_TVCG_2022_3189883
crossref_primary_10_1111_cgf_14726
crossref_primary_10_1109_TVCG_2020_3030432
crossref_primary_10_1111_cgf_14034
crossref_primary_10_1109_TVCG_2024_3357065
Cites_doi 10.1145/2594473.2594476
10.1109/TVCG.2011.201
10.1007/978-3-642-04898-2_455
10.1109/TVCG.2014.2346248
10.1145/2939672.2939778
10.1023/A:1010933404324
10.2307/1390754
10.1109/TVCG.2018.2864825
10.1145/1541880.1541882
10.1214/aos/1013203451
10.1371/journal.pone.0152173
10.1162/089976600300015565
10.1109/ICDM.2008.17
10.1007/978-3-319-91476-3_3
10.2307/2685478
10.1145/1920261.1920263
10.1023/B:AIRE.0000045502.10941.a9
10.1007/3-540-46145-0_17
10.1016/S0004-3702(98)00082-4
10.1109/TVCG.2015.2467196
10.1145/3097983.3098154
10.1145/335191.335388
10.1109/MCG.2018.021951629
10.1109/TVCG.2017.2744378
10.1002/sam.11161
10.1145/335191.335437
10.1016/j.actpsy.2012.04.004
10.1007/BF01898350
10.1109/TVCG.2017.2711030
10.1145/1401890.1401946
10.1145/2858036.2858529
10.1109/TITB.2006.880553
10.1137/1.9781611972818.2
ContentType Journal Article
Copyright 2019 The Author(s) Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
2019 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2019 The Author(s) Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
– notice: 2019 The Eurographics Association and John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1111/cgf.13683
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Public Health
EISSN 1467-8659
EndPage 224
ExternalDocumentID 10_1111_cgf_13683
CGF13683
Genre article
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AHQJS
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SC
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2973-6df6e981e87847f8b1a4e9a09aecd984f640eedb90947b9f8ba92aae3f4483a53
IEDL.DBID DR2
ISSN 0167-7055
IngestDate Thu Aug 07 15:24:29 EDT 2025
Tue Jul 01 02:23:10 EDT 2025
Thu Apr 24 22:51:52 EDT 2025
Wed Jan 22 16:39:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2973-6df6e981e87847f8b1a4e9a09aecd984f640eedb90947b9f8ba92aae3f4483a53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2269401111
PQPubID 30877
PageCount 12
ParticipantIDs proquest_journals_2269401111
crossref_citationtrail_10_1111_cgf_13683
crossref_primary_10_1111_cgf_13683
wiley_primary_10_1111_cgf_13683_CGF13683
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2019
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: June 2019
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationYear 2019
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2004; 22
2012; 140
2009; 41
1985; 1
2012
2011
2010
2008
1974
2002
2011; 17
2001; 45
2011; 3
2007; 11
2016; 11
1999
2018; 24
2014; 20
2018; 17
18
2001
2000
2000; 12
2019; 25
2014; 15
2018
2017
2016
2015
2013
1998; 105
1998; 52
1996; 5
2012; 5
20
2016; 22
e_1_2_11_30_2
e_1_2_11_13_2
e_1_2_11_34_2
e_1_2_11_51_2
e_1_2_11_11_2
e_1_2_11_32_2
e_1_2_11_53_2
e_1_2_11_6_2
e_1_2_11_27_2
e_1_2_11_4_2
e_1_2_11_25_2
e_1_2_11_2_2
e_1_2_11_48_2
e_1_2_11_29_2
e_1_2_11_20_2
e_1_2_11_43_2
e_1_2_11_45_2
e_1_2_11_8_2
e_1_2_11_22_2
e_1_2_11_41_2
e_1_2_11_17_2
e_1_2_11_15_2
Zhao J. (e_1_2_11_52_2)
e_1_2_11_36_2
e_1_2_11_19_2
Jackowetz N. (e_1_2_11_24_2) 2011; 3
e_1_2_11_38_2
e_1_2_11_31_2
e_1_2_11_35_2
e_1_2_11_50_2
e_1_2_11_12_2
e_1_2_11_33_2
e_1_2_11_10_2
e_1_2_11_28_2
e_1_2_11_5_2
e_1_2_11_26_2
e_1_2_11_47_2
e_1_2_11_49_2
e_1_2_11_44_2
e_1_2_11_46_2
e_1_2_11_9_2
e_1_2_11_23_2
e_1_2_11_40_2
Buczak A. L. (e_1_2_11_3_2)
e_1_2_11_7_2
e_1_2_11_21_2
e_1_2_11_42_2
e_1_2_11_16_2
e_1_2_11_14_2
e_1_2_11_37_2
e_1_2_11_18_2
e_1_2_11_39_2
References_xml – year: 2011
– start-page: 13
  year: 2011
  end-page: 24
– volume: 52
  start-page: 181
  issue: 2
  year: 1998
  end-page: 184
  article-title: Violin plots: a box plot‐density trace synergism
  publication-title: The American Statistician
– start-page: 2461
  year: 2017
  end-page: 2467
– start-page: 1
  year: 2010
  end-page: 9
– start-page: 444
  year: 2008
  end-page: 452
– start-page: 827
  year: 2017
  end-page: 835
– volume: 22
  start-page: 85
  issue: 2
  year: 2004
  end-page: 126
  article-title: A survey of outlier detection methodologies
  publication-title: Artificial Intelligence Review
– volume: 1
  start-page: 69
  issue: 2
  year: 1985
  end-page: 91
  article-title: The plane with parallel coordinates
  publication-title: The Visual Computer
– start-page: 59
  year: 2012
  end-page: 63
– year: 2018
– volume: 15
  start-page: 11
  issue: 1
  year: 2014
  end-page: 22
  article-title: Ensembles for unsupervised outlier detection: challenges and research questions a position paper
  publication-title: SIGKDD Explorations
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  article-title: Random forests
  publication-title: Machine learning
– start-page: 1094
  year: 2011
  end-page: 1096
  article-title: Principal component analysis
– start-page: 26
  year: 2018
  end-page: 38
– volume: 105
  start-page: 209
  issue: 1‐2
  year: 1998
  end-page: 261
  article-title: Multiple perspective dynamic decision making
  publication-title: Artificial Intelligence
– volume: 12
  start-page: 1207
  issue: 5
  year: 2000
  end-page: 1245
  article-title: New support vector algorithms
  publication-title: Neural Computation
– start-page: 1189
  year: 2001
  end-page: 1232
– volume: 24
  start-page: 2223
  issue: 7
  year: 2018
  end-page: 2237
  article-title: Rclens: Interactive rare category exploration and identification
  publication-title: IEEE Trans. on Visualization and Computer Graphics
– volume: 11
  start-page: 312
  issue: 3
  year: 2007
  end-page: 319
  article-title: Confident interpretation of bayesian decision tree ensembles for clinical applications
  publication-title: IEEE Transactions on Information Technology in Biomedicine
– volume: 20
  start-page: 1773
  end-page: 1782
– start-page: 304
  year: 2013
  end-page: 320
– volume: 17
  start-page: 2310
  issue: 12
  year: 2011
  end-page: 2316
  article-title: Flexible linked axes for multivariate data visualization
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– start-page: 2579
  year: 2008
  end-page: 2605
– start-page: 1135
  year: 2016
  end-page: 1144
– year: 2015
– volume: 25
  start-page: 109
  issue: 1
  year: 2019
  end-page: 119
  article-title: Ensemblelens: Ensemble‐based visual exploration of anomaly detection algorithms with multidimensional data
  publication-title: IEEE Trans. on Visualization and Computer Graphics
– volume: 22
  start-page: 280
  issue: 1
  year: 2016
  end-page: 289
  article-title: Targetvue: Visual analysis of anomalous user behaviors in online communication systems
  publication-title: IEEE Trans. on Visualization and Computer Graphics
– volume: 140
  start-page: 158
  issue: 2
  year: 2012
  end-page: 163
  article-title: Short‐term storage capacity for visual objects depends on expertise
  publication-title: Acta Psychologica
– volume: 5
  start-page: 78
  issue: 1
  year: 1996
  end-page: 99
  article-title: Interactive high‐dimensional data visualization
  publication-title: Journal of Computational and Graphical Statistics
– volume: 11
  issue: 4
  year: 2016
  article-title: A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data
  publication-title: PloS one
– start-page: 170
  year: 2002
  end-page: 180
– volume: 5
  start-page: 363
  issue: 5
  year: 2012
  end-page: 387
  article-title: A survey on unsupervised outlier detection in high‐dimensional numerical data
  publication-title: Statistical Analysis and Data Mining
– volume: 18
  start-page: 1153
  end-page: 1176
– volume: 24
  start-page: 163
  issue: 1
  year: 2018
  end-page: 173
  article-title: Visual diagnosis of tree boosting methods
  publication-title: IEEE transactions on visualization and computer graphics
– start-page: 5686
  year: 2016
  end-page: 5697
– year: 2016
– year: 2010
– start-page: 1
  year: 2018
  end-page: 11
– start-page: 93
  year: 2000
  end-page: 104
– start-page: 217
  year: 2002
  end-page: 223
– volume: 3
  start-page: 1
  year: 2011
  end-page: 7
  article-title: Sulphur dioxide content of wines: the role of winemaking and carbonyl compounds
  publication-title: Research Focus
– start-page: 413
  year: 2008
  end-page: 422
– year: 1974
– volume: 41
  start-page: 15
  issue: 3
  year: 2009
  article-title: Anomaly detection: A survey
  publication-title: ACM Computing Surveys
– volume: 17
  start-page: 22
  issue: 1
  year: 2018
  end-page: 40
  article-title: Z‐glyph: Visualizing outliers in multivariate data
  publication-title: IEEE Trans. on Visualization and Computer Graphics
– start-page: 211
  year: 1999
  end-page: 222
– start-page: 427
  year: 2000
  end-page: 438
– volume: 20
  start-page: 1983
  issue: 12
  year: 2014
  end-page: 1992
  article-title: Upset: visualization of intersecting sets
  publication-title: IEEE Trans. on Visualization and Computer Graphics
– ident: e_1_2_11_51_2
  doi: 10.1145/2594473.2594476
– ident: e_1_2_11_10_2
  doi: 10.1109/TVCG.2011.201
– ident: e_1_2_11_25_2
  doi: 10.1007/978-3-642-04898-2_455
– ident: e_1_2_11_29_2
– ident: e_1_2_11_34_2
  doi: 10.1109/TVCG.2014.2346248
– ident: e_1_2_11_43_2
  doi: 10.1145/2939672.2939778
– ident: e_1_2_11_6_2
  doi: 10.1023/A:1010933404324
– ident: e_1_2_11_2_2
  doi: 10.2307/1390754
– ident: e_1_2_11_36_2
– ident: e_1_2_11_50_2
  doi: 10.1109/TVCG.2018.2864825
– ident: e_1_2_11_28_2
– ident: e_1_2_11_7_2
  doi: 10.1145/1541880.1541882
– ident: e_1_2_11_16_2
  doi: 10.1214/aos/1013203451
– ident: e_1_2_11_18_2
  doi: 10.1371/journal.pone.0152173
– ident: e_1_2_11_47_2
  doi: 10.1162/089976600300015565
– ident: e_1_2_11_22_2
– ident: e_1_2_11_13_2
– ident: e_1_2_11_37_2
  doi: 10.1109/ICDM.2008.17
– ident: e_1_2_11_15_2
  doi: 10.1007/978-3-319-91476-3_3
– ident: e_1_2_11_21_2
  doi: 10.2307/2685478
– ident: e_1_2_11_46_2
  doi: 10.1145/1920261.1920263
– ident: e_1_2_11_19_2
  doi: 10.1023/B:AIRE.0000045502.10941.a9
– ident: e_1_2_11_20_2
  doi: 10.1007/3-540-46145-0_17
– ident: e_1_2_11_40_2
– ident: e_1_2_11_49_2
– ident: e_1_2_11_32_2
  doi: 10.1016/S0004-3702(98)00082-4
– ident: e_1_2_11_9_2
  doi: 10.1109/TVCG.2015.2467196
– ident: e_1_2_11_14_2
  doi: 10.1145/3097983.3098154
– ident: e_1_2_11_5_2
– ident: e_1_2_11_35_2
– ident: e_1_2_11_48_2
– ident: e_1_2_11_4_2
  doi: 10.1145/335191.335388
– start-page: 1773
  volume-title: Visual analysis of anomalous information spreading on social media
  ident: e_1_2_11_52_2
– ident: e_1_2_11_8_2
  doi: 10.1109/MCG.2018.021951629
– ident: e_1_2_11_26_2
– start-page: 1153
  volume-title: A survey of data mining and machine learning methods for cyber security intrusion detection
  ident: e_1_2_11_3_2
– ident: e_1_2_11_38_2
  doi: 10.1109/TVCG.2017.2744378
– ident: e_1_2_11_11_2
– ident: e_1_2_11_53_2
  doi: 10.1002/sam.11161
– ident: e_1_2_11_17_2
– volume: 3
  start-page: 1
  year: 2011
  ident: e_1_2_11_24_2
  article-title: Sulphur dioxide content of wines: the role of winemaking and carbonyl compounds
  publication-title: Research Focus
– ident: e_1_2_11_42_2
  doi: 10.1145/335191.335437
– ident: e_1_2_11_45_2
  doi: 10.1016/j.actpsy.2012.04.004
– ident: e_1_2_11_41_2
– ident: e_1_2_11_23_2
  doi: 10.1007/BF01898350
– ident: e_1_2_11_33_2
  doi: 10.1109/TVCG.2017.2711030
– ident: e_1_2_11_39_2
– ident: e_1_2_11_31_2
  doi: 10.1145/1401890.1401946
– ident: e_1_2_11_30_2
  doi: 10.1145/2858036.2858529
– ident: e_1_2_11_12_2
– ident: e_1_2_11_44_2
  doi: 10.1109/TITB.2006.880553
– ident: e_1_2_11_27_2
  doi: 10.1137/1.9781611972818.2
SSID ssj0004765
Score 2.3237321
Snippet Outliers, the data instances that do not conform with normal patterns in a dataset, are widely studied in various domains, such as cybersecurity, social...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 213
SubjectTerms Algorithms
Analytics
Categories and Subject Descriptors (according to ACM CCS)
Cybersecurity
Data analysis
Datasets
Dimensional analysis
Domains
H.5.2 [Information Interfaces and Presentations]: User Interfaces—Graphics user interfaces (GUI)
Outliers (statistics)
Public health
Title Oui! Outlier Interpretation on Multi‐dimensional Data via Visual Analytics
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.13683
https://www.proquest.com/docview/2269401111
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kJz34FqtVVvHgJaXNPpLFk1RrEbEgVnoQwm6yK0Wp0iYePPkT_I3-Emc3SR-iIEIOOUw2yexO5pvw7TcIHYV-rH1lqAe5HgoUwwJPEgo1j2oSplmgAuVYvte806OXfdZfQCflXphcH2Lyw81Ghvte2wCXajwT5PGDsRyt0Cp9Wq6WBUQ3U-koGnBW6npbxZhCVciyeCZXzueiKcCchakuz7RX0H35hDm95LGepaoev30Tb_znK6yi5QJ_4tN8wayhBT1cR0szqoQb6KqbDQ5wN0sBno7wPCsRw-H27H6-fyS2MUAu6oHPZCrx60Diu8E4s-NbrROrAL2Jeu3z21bHK5oueLFtY-XxxHAtwqYOA0hcJlRNSbWQDSF1nIiQGk4bkFeVgLowUAIMpPCl1MRAoUckI1uoMnwe6m2EhWGc8CQ2hlBKQijbE6NJApCAc0E5q6Lj0v1RXCiS28YYT1FZmYCDIuegKjqcmL7kMhw_GdXKOYyKSBxHvt2q27CGcDs3Gb8PELUu2u5k5--mu2gRMJTI2WM1VElHmd4DnJKqfbcgvwBuHePG
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xHIADO2IpEBAHLkFt7TixxAUVSoHSSqhFXFBkJzaqQAVBwoETn8A38iWMnaQUBBJCyiGHiRMvk3nPGr8B2AmqkapKTV2M9UhQtOe7glDkPLJCPOX50pc2y7fFGl16euVdjcB-cRYm04cYbLgZz7D_a-PgZkN6yMujG22StAIyCuOmorclVBef4lHUZ16h7G00Y3JdIZPHM3j0azT6hJjDQNVGmvoMXBffmCWY3O6lidyLXr7JN_63E7MwnUNQ5yBbM3MwovrzMDUkTLgAzXba23LaaYII9dH5mpjo4GWP7b6_vsWmNkCm6-EcikQ4zz3hXPaeUtO-kTsxItCL0K0fdWoNN6-74EamkpXLYs0UDyoq8DF26UBWBFVclLlQUcwDqhktY2iVHKmhLzkaCF4VQhGNXI8IjyzBWP--r5bB4dpjhMWR1oRSEiBzj7UiMaICxjhO2grsFuMfRrkouamNcRcW5AQHKLQDtALbA9OHTInjJ6NSMYlh7oxPYdWc1i0bQ3ydnY3fGwhrx3V7s_p3002YaHTOm2HzpHW2BpMIqXiWTFaCseQxVesIWxK5YVfnB6se5-E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qBdGDb7FaNYoHLylpd7PJ4klaa9XSiljpQQi7ya4UpZY28eDJn-Bv9Je4m0cfoiBCDjlMNsnsTOabMPMNwLFb8UWFS2yqWK8SFGk7JkNY5Ty8jGxhO9zhcZVvizQ6-Kprd3NwmvXCJPwQ4x9u2jPi77V28EEgp5zcf5S6RstFczCPieVqk67dTrijsEPsjNhbU8aktEK6jGd86WwwmiDMaZwaB5r6Cjxkj5jUlzyVopCX_Ldv7I3_fIdVWE4BqHGWWMwa5ER_HZamaAk3oNmOeodGOwoVPh0as2WJhjript3P949ATwZIWD2MGguZ8dpjxn1vFOn1NdmJpoDehE79_K7aMNOpC6av51iZJJBEULcsXEdFLunyMsOCMosy4QfUxZJgSwVWTlVi6HCqBBitMCaQVJkeYjbagnz_pS-2waDSJogEvpQIY-SqvD2QAgUKExBCMbELcJKp3_NTSnI9GePZy1ITpSAvVlABjsaig4SH4yehYraHXuqKI6-ie3UtLahuF2_G7wt41Yt6fLLzd9EDWLip1b3mZet6FxYVnqJJJVkR8uEwEnsKs4R8P7bNLyX85pk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oui%21+Outlier+Interpretation+on+Multi%E2%80%90dimensional+Data+via+Visual+Analytics&rft.jtitle=Computer+graphics+forum&rft.au=Zhao%2C+Xun&rft.au=Cui%2C+Weiwei&rft.au=Wu%2C+Yanhong&rft.au=Zhang%2C+Haidong&rft.date=2019-06-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=38&rft.issue=3&rft.spage=213&rft.epage=224&rft_id=info:doi/10.1111%2Fcgf.13683&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_cgf_13683
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon