Dynamic Output Feedback Control for Systems Subject to Actuator Saturation via Event‐Triggered Scheme
In this paper, the event‐triggered dynamic output feedback control problem for linear systems with actuator saturation is investigated. Event‐triggered scheme only transmits the corresponding signal when the event‐triggered condition is violated. Due to its advantage of saving communication resource...
Saved in:
Published in | Asian journal of control Vol. 20; no. 1; pp. 207 - 215 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.01.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, the event‐triggered dynamic output feedback control problem for linear systems with actuator saturation is investigated. Event‐triggered scheme only transmits the corresponding signal when the event‐triggered condition is violated. Due to its advantage of saving communication resources, it is utilized to design the dynamic output feedback controller. A criterion is established to guarantee the stability of the closed‐loop system by introducing an exponential term for the Lyapunov function, which corresponds to the exponential term in the event‐triggered condition. The explicit design of the coefficient matrices of the controller is presented. Furthermore, a lower bound of the inter‐event time is calculated to avoid Zeno behavior. An optimization algorithm is then formulated to maximize the estimation of the domain of attraction. Finally, a numerical example is given to illustrate the effectiveness of our methods and to show the trade‐off between the size of the domain of attraction and communication resources saving. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1561-8625 1934-6093 |
DOI: | 10.1002/asjc.1662 |