In situ and ex situ imaging of plant extracellular vesicles as nanovectors for cross‐domain communication

Extracellular vesicles (EVs) are nanometric, lipid membrane‐bound vesicles released outside the cell. Plants have not been traditionally regarded to have EVs due to the presence of a cell wall. However, since the mid‐1960s, EVs have been reported in various plant species. They are often shown as ves...

Full description

Saved in:
Bibliographic Details
Published inJournal of phytopathology Vol. 169; no. 9; pp. 515 - 524
Main Author Kim, Ki Woo
Format Journal Article
LanguageEnglish
Published Berlin Wiley Subscription Services, Inc 01.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Extracellular vesicles (EVs) are nanometric, lipid membrane‐bound vesicles released outside the cell. Plants have not been traditionally regarded to have EVs due to the presence of a cell wall. However, since the mid‐1960s, EVs have been reported in various plant species. They are often shown as vesicles in multivesicular bodies (MVBs) that later fuse with the plasma membrane (PM). Plant EVs have been commonly visualized using electron microscopy. Using membrane‐spanning domains, plant EVs can be fluorescence‐detected. They were observed near the infection sites in host tissues attacked by pathogens or at the interfaces with symbiotic fungi. Plant EVs could be taken up by bacteria and fungi. Proteins, lipids and nucleic acids, including small ribonucleic acids (RNAs), were found in plant EVs. Plant EVs have been isolated from the symplast and apoplast of various organs and purified after density gradient ultracentrifugation. Improved protocols and technologies for EV visualization provide a basis for the future applications of EVs in plant pathology.
AbstractList Abstract Extracellular vesicles (EVs) are nanometric, lipid membrane‐bound vesicles released outside the cell. Plants have not been traditionally regarded to have EVs due to the presence of a cell wall. However, since the mid‐1960s, EVs have been reported in various plant species. They are often shown as vesicles in multivesicular bodies (MVBs) that later fuse with the plasma membrane (PM). Plant EVs have been commonly visualized using electron microscopy. Using membrane‐spanning domains, plant EVs can be fluorescence‐detected. They were observed near the infection sites in host tissues attacked by pathogens or at the interfaces with symbiotic fungi. Plant EVs could be taken up by bacteria and fungi. Proteins, lipids and nucleic acids, including small ribonucleic acids (RNAs), were found in plant EVs. Plant EVs have been isolated from the symplast and apoplast of various organs and purified after density gradient ultracentrifugation. Improved protocols and technologies for EV visualization provide a basis for the future applications of EVs in plant pathology.
Extracellular vesicles (EVs) are nanometric, lipid membrane‐bound vesicles released outside the cell. Plants have not been traditionally regarded to have EVs due to the presence of a cell wall. However, since the mid‐1960s, EVs have been reported in various plant species. They are often shown as vesicles in multivesicular bodies (MVBs) that later fuse with the plasma membrane (PM). Plant EVs have been commonly visualized using electron microscopy. Using membrane‐spanning domains, plant EVs can be fluorescence‐detected. They were observed near the infection sites in host tissues attacked by pathogens or at the interfaces with symbiotic fungi. Plant EVs could be taken up by bacteria and fungi. Proteins, lipids and nucleic acids, including small ribonucleic acids (RNAs), were found in plant EVs. Plant EVs have been isolated from the symplast and apoplast of various organs and purified after density gradient ultracentrifugation. Improved protocols and technologies for EV visualization provide a basis for the future applications of EVs in plant pathology.
Author Kim, Ki Woo
Author_xml – sequence: 1
  givenname: Ki Woo
  orcidid: 0000-0002-7010-0336
  surname: Kim
  fullname: Kim, Ki Woo
  email: kiwoo@knu.ac.kr
  organization: Kyungpook National University
BookMark eNp1kLFOwzAQhi0EEm1h4A0sMTGktZ04qUdUAS2qBAPMluPYxSWxg50UuvEIPCNPgmlYueVOuu_u_vvH4Ng6qwC4wGiKY8y27csUp4iQIzDCWcoSlKXZMRghluIEF3N6CsYhbBEiKEVoBF5XFgbT9VDYCqqPoTaN2Bi7gU7Dtha2i43OC6nquq-FhzsVjKxVgCJAK6zbKdk5H6B2HkrvQvj-_KpcI4yF0jVNb40UnXH2DJxoUQd1_pcn4Pn25mmxTNYPd6vF9TqRhBUkKaqomUkpaJ7mCkmBSp1LPc8YwjrXFCuUl3IuK6KrDNGMlhUrtFaMlZUmmqQTcDnsbb1761Xo-Nb13saTnFDKKKWIFJG6GqiDZK80b3183O85RvzXSx695AcvIzsb2HdTq_3_IL9_XA4TPydLeo4
CitedBy_id crossref_primary_10_3390_plants13030364
crossref_primary_10_3389_fcell_2022_895853
Cites_doi 10.1080/21688370.2015.1134415
10.3402/jev.v3.24641
10.1111/j.1462-5822.2006.00683.x
10.1126/science.aar4142
10.1038/s41598-019-55477-0
10.1016/S0022-5320(67)80128-X
10.1016/S0022-5320(65)80092-2
10.1007/s00425-019-03315-y
10.1104/pp.18.01557
10.1016/j.chom.2018.10.001
10.1016/j.cub.2018.01.059
10.7717/peerj.5186
10.1104/pp.16.01253
10.1016/j.ymthe.2020.11.030
10.1016/j.molp.2020.07.016
10.1590/0102-33062016abb0279
10.1016/j.jsb.2020.107474
10.1126/sciadv.abc2508
10.1016/j.tcb.2015.01.004
10.1007/s00709-015-0877-3
10.1002/ps.5686
10.1093/jxb/ery255
10.1038/nrm.2017.125
10.1111/nph.16725
10.1016/j.ceb.2014.05.008
10.1093/jxb/erx355
10.1016/j.pbi.2018.01.008
10.1080/20013078.2019.1685634
10.3402/jev.v4.28713
10.1016/j.sajb.2018.08.018
10.1128/JB.182.10.2985-2988.2000
10.1105/tpc.18.00872
10.3390/ijms20225695
10.1016/j.chom.2018.11.007
10.1016/j.chom.2019.07.021
10.1016/j.tibtech.2020.05.012
10.1038/s41598-021-85833-y
10.1038/ncomms2886
10.1038/s41477-019-0364-5
10.3390/ijms20020357
10.1126/science.aau6977
10.1186/s12951-020-00656-9
10.1007/s00709-015-0887-1
10.1038/s41477-019-0365-4
10.1002/mnfr.201300729
10.1038/s41565-019-0591-y
10.3390/plants9121777
10.1007/s00709-019-01435-6
10.1038/s41598-020-62920-0
10.1080/15592324.2019.1581559
10.1038/s41420-020-0271-6
10.1104/pp.19.00381
ContentType Journal Article
Copyright 2021 Wiley-VCH GmbH
Copyright © 2021 Blackwell Verlag GmbH
Copyright_xml – notice: 2021 Wiley-VCH GmbH
– notice: Copyright © 2021 Blackwell Verlag GmbH
DBID AAYXX
CITATION
7QL
7T7
7U9
8FD
C1K
FR3
H94
M7N
P64
DOI 10.1111/jph.13022
DatabaseName CrossRef
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Virology and AIDS Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef

Virology and AIDS Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1439-0434
EndPage 524
ExternalDocumentID 10_1111_jph_13022
JPH13022
Genre reviewArticle
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29L
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ACAHQ
ACBTR
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBD
EBS
ECGQY
EDH
EJD
EMK
ESTFP
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TUS
UB1
VH1
W8V
W99
WBKPD
WIB
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~IA
~WT
AAYXX
CITATION
7QL
7T7
7U9
8FD
C1K
FR3
H94
M7N
P64
ID FETCH-LOGICAL-c2972-7d0439cca5636e0ca0bf6cf84901f6f51e06bc8cd2fd40545bd97ffe99bdf2f23
IEDL.DBID DR2
ISSN 0931-1785
IngestDate Thu Oct 10 19:04:16 EDT 2024
Fri Aug 23 03:02:52 EDT 2024
Sat Aug 24 01:02:51 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2972-7d0439cca5636e0ca0bf6cf84901f6f51e06bc8cd2fd40545bd97ffe99bdf2f23
ORCID 0000-0002-7010-0336
PQID 2559555027
PQPubID 1086386
PageCount 10
ParticipantIDs proquest_journals_2559555027
crossref_primary_10_1111_jph_13022
wiley_primary_10_1111_jph_13022_JPH13022
PublicationCentury 2000
PublicationDate September 2021
2021-09-00
20210901
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Journal of phytopathology
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 8
2019; 9
2018; 28
2013; 4
2018; 360
1965; 13
2015; 4
2019; 5
2019; 31
2021; 29
2017; 68
2019; 14
2006; 8
2020; 38
2020; 15
2020; 228
2020; 13
2017; 173
2014; 29
2020; 367
2020; 10
2020; 76
2018; 44
2019; 121
2018; 24
2020; 18
2016; 4
2018; 19
2018; 6
2020; 6
2017; 31
2015; 25
2019; 180
2014; 3
2021; 11
2020; 251
2019; 20
2019; 26
2019; 25
2000; 182
1967; 18
2018
2014; 58
2019; 179
2016; 253
2020; 210
2020; 257
2016; 66
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
Doorn W. G. (e_1_2_9_46_1) 2016; 66
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 253
  start-page: 31
  year: 2016
  end-page: 43
  article-title: Unconventional protein secretion in plants: A critical assessment
  publication-title: Protoplasma
– volume: 15
  start-page: 1777
  year: 2020
  article-title: Plant roots release small extracellular vesicles with antifungal activity
  publication-title: Plants (Basel)
– volume: 13
  start-page: 1523
  year: 2020
  end-page: 1532
  article-title: Lipidomic analysis reveals the importance of GIPCs in leaf extracellular vesicles
  publication-title: Molecular Plant
– volume: 10
  start-page: 6494
  year: 2020
  article-title: Improving extracellular vesicles visualization: From static to motion
  publication-title: Scientific Reports
– volume: 14
  year: 2019
  article-title: Emerging roles of tetraspanins in plant inter‐cellular and inter‐kingdom communication
  publication-title: Plant Signaling & Behavior
– volume: 8
  year: 2019
  article-title: Single molecule characterization of individual extracellular vesicles from pancreatic cancer
  publication-title: Journal of Extracellular Vesicles
– volume: 76
  start-page: 841
  year: 2020
  end-page: 845
  article-title: RNA‐based biocontrol compounds: Current status and perspectives to reach the market
  publication-title: Pest Management Science
– volume: 25
  start-page: 153
  year: 2019
  end-page: 165
  article-title: A effector suppresses trans‐kingdom RNAi to promote disease susceptibility
  publication-title: Cell Host & Microbe
– volume: 4
  start-page: 28713
  year: 2015
  article-title: Ginger‐derived nanoparticles protect against alcohol‐induced liver damage
  publication-title: Journal of Extracellular Vesicles
– volume: 44
  start-page: 16
  year: 2018
  end-page: 22
  article-title: Extracellular vesicles as key mediators of plant‐microbe interactions
  publication-title: Current Opinion in Plant Biology
– volume: 251
  start-page: 12
  year: 2020
  article-title: Exosomes in the phloem and xylem of woody plants
  publication-title: Planta
– volume: 180
  start-page: 1375
  year: 2019
  end-page: 1388
  article-title: Turnip mosaic virus components are released into the extracellular space by vesicles in infected leaves
  publication-title: Plant Physiology
– volume: 5
  start-page: 194
  year: 2019
  end-page: 203
  article-title: Extensive membrane systems at the host‐arbuscular mycorrhizal fungus interface
  publication-title: Nature Plants
– volume: 20
  start-page: 357
  year: 2019
  article-title: Extracellular vesicles from fresh and dried plants—simultaneous purification and visualization using gel electrophoresis
  publication-title: International Journal of Molecular Sciences
– volume: 3
  start-page: 24641
  year: 2014
  article-title: Routes and mechanisms of extracellular vesicle uptake
  publication-title: Journal of Extracellular Vesicles
– volume: 228
  start-page: 1505
  year: 2020
  end-page: 1510
  article-title: Growing pains: Addressing the pitfalls of plant extracellular vesicle research
  publication-title: New Phytologist
– volume: 9
  start-page: 19159
  year: 2019
  article-title: Optimized isolation of extracellular vesicles from various organic sources using aqueous two‐phase system
  publication-title: Scientific Reports
– volume: 14
  start-page: 1084
  year: 2019
  end-page: 1087
  article-title: The Onpattro story and the clinical translation of nanomedicines containing nucleic acid‐based drugs
  publication-title: Nature Nanotechnology
– volume: 4
  start-page: 1867
  year: 2013
  article-title: Delivery of therapeutic agents by nanoparticles made of grapefruit‐derived lipids
  publication-title: Nature Communications
– start-page: 4655
  year: 2018
  end-page: 4658
  article-title: Extracellular vesicles: A missing component in plant cell wall remodeling
  publication-title: Journal of Experimental Botany
– volume: 24
  start-page: 637
  year: 2018
  end-page: 652
  article-title: Plant‐derived exosomal microRNAs shape the gut microbiota
  publication-title: Cell Host & Microbe
– volume: 257
  start-page: 3
  year: 2020
  end-page: 12
  article-title: Plant extracellular vesicles
  publication-title: Protoplasma
– volume: 18
  start-page: 100
  year: 2020
  article-title: An efficient method to isolate lemon derived extracellular vesicles for gastic cancer therapy
  publication-title: Journal of Nanbiotechnology
– volume: 31
  start-page: 344
  year: 2017
  end-page: 357
  article-title: A reduced, yet functional, nectary disk integrates a complex system of floral nectar secretion in the genus (Bignoniaceae)
  publication-title: Acta Botanica Brasilica
– volume: 31
  start-page: 315
  year: 2019
  end-page: 324
  article-title: Plant extracellular vesicles contain diverse small RNA species and are enriched in 10‐ to 17‐nucleotide "tiny" RNAs
  publication-title: The Plant Cell
– volume: 19
  start-page: 213
  year: 2018
  end-page: 228
  article-title: Shedding light on the cell biology of extracellular vesicles
  publication-title: Nature Reviews Molecular Cell Biology
– volume: 58
  start-page: 1561
  year: 2014
  end-page: 1573
  article-title: Interspecies communication between plant and mouse gut host cells through edible plant derived exosome‐like nanoparticles
  publication-title: Molecular Nutrition & Food Research
– volume: 38
  start-page: 1066
  year: 2020
  end-page: 1098
  article-title: Technologies and standardization in research on extracellular vesicles
  publication-title: Trends in Biotechnology
– volume: 66
  start-page: 103
  year: 2016
  end-page: 112
  article-title: Plastid degeneration in (Bromeliaceae) and (Cactaceae) provides evidence about the origin and destiny of multilamellar bodies in plants
  publication-title: Phytomorphology
– volume: 25
  start-page: 364
  year: 2015
  end-page: 372
  article-title: Ectosomes and exosomes: Shedding the confusion between extracellular vesicles
  publication-title: Trends in Cell Biology
– volume: 20
  start-page: 5695
  year: 2019
  article-title: Extracellular vesicles—connecting kingdoms
  publication-title: International Journal of Molecular Sciences
– volume: 28
  start-page: R435
  year: 2018
  end-page: R444
  article-title: Exosomes and ectosomes in intercellular communication
  publication-title: Current Biology
– volume: 13
  start-page: 112
  year: 1965
  end-page: 128
  article-title: The composition and ultrastructure of the nucellus in cotton
  publication-title: Journal of Ultrastructure Research
– volume: 360
  start-page: 1126
  year: 2018
  end-page: 1129
  article-title: Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes
  publication-title: Science
– volume: 18
  start-page: 428
  year: 1967
  end-page: 443
  article-title: Ultrastructural change during growth and embryogenesis in carrot cell cultures
  publication-title: Journal of Ultrastructure Research
– volume: 5
  start-page: 204
  year: 2019
  end-page: 211
  article-title: Arbuscular cell invasion coincides with extracellular vesicles and membrane tubules
  publication-title: Nature Plants
– volume: 182
  start-page: 2985
  year: 2000
  end-page: 2988
  article-title: Sulfolobicins, specific proteinaceous toxins produced by strains of the extremely thermophilic archaeal genus
  publication-title: Journal of Bacteriology
– volume: 4
  year: 2016
  article-title: Plant derived edible nanoparticles as a new therapeutic approach against diseases
  publication-title: Tissue Barriers
– volume: 6
  start-page: eabc2508
  issue: 45
  year: 2020
  article-title: 3D tracking of extracellular vesicles by holographic fluorescence imaging
  publication-title: Science Advances
– volume: 6
  year: 2018
  article-title: Identification of exosome‐like nanoparticle‐derived microRNAs from 11 edible fruits and vegetables
  publication-title: PeerJ
– volume: 210
  start-page: 107474
  year: 2020
  article-title: Direct comparison of optical and electron microscopy methods for structural characterization of extracellular vesicles
  publication-title: Journal of Structural Biology
– volume: 179
  start-page: 1236
  year: 2019
  end-page: 1247
  article-title: Functions of extracellular vesicles in immunity and virulence
  publication-title: Plant Physiology
– volume: 29
  start-page: 107
  year: 2014
  end-page: 115
  article-title: Unconventional protein secretion (UPS) pathways in plants
  publication-title: Current Opinion in Cell Biology
– volume: 121
  start-page: 16
  year: 2019
  end-page: 25
  article-title: Secretory structures in the leaves of L
  publication-title: South African Journal of Botany
– volume: 11
  issue: 1
  year: 2021
  article-title: Delivery of functional exogenous proteins by plant‐derived vesicles to human cells in vitro
  publication-title: Scientific Reports
– volume: 68
  start-page: 5485
  year: 2017
  end-page: 5495
  article-title: Plant extracellular vesicles are incorporated by a fungal pathogen and inhibit its growth
  publication-title: Journal of Experimental Botany
– volume: 8
  start-page: 1009
  year: 2006
  end-page: 1019
  article-title: Multivesicular bodies participate in a cell wall‐associated defence response in barley leaves attacked by the pathogenic powdery mildew fungus
  publication-title: Cellular Microbiology
– volume: 173
  start-page: 728
  year: 2017
  end-page: 741
  article-title: Extracellular vesicles isolated from the leaf apoplast carry stress‐response proteins
  publication-title: Plant Physiology
– volume: 29
  start-page: 13
  year: 2021
  end-page: 31
  article-title: Plant exosome‐like nanovesicles: Emerging therapeutics and drug delivery nanoplatforms
  publication-title: Molecular Therapy
– volume: 253
  start-page: 1233
  year: 2016
  end-page: 1242
  article-title: Ultrastructural changes in the epidermis of petals of the sweet orange infected by
  publication-title: Protoplasma
– volume: 367
  start-page: eaau6977
  year: 2020
  article-title: The biology, function, and biomedical applications of exosomes
  publication-title: Science
– volume: 6
  start-page: 43
  year: 2020
  article-title: Effect of microvesicles from containing miRNA on proliferation and apoptosis in tumor cell lines
  publication-title: Cell Death Discovery
– volume: 26
  start-page: 173
  year: 2019
  end-page: 182
  article-title: Small RNAs ‐ big players in plant‐microbe interactions
  publication-title: Cell Host & Microbe
– ident: e_1_2_9_53_1
  doi: 10.1080/21688370.2015.1134415
– ident: e_1_2_9_31_1
  doi: 10.3402/jev.v3.24641
– ident: e_1_2_9_3_1
  doi: 10.1111/j.1462-5822.2006.00683.x
– ident: e_1_2_9_5_1
  doi: 10.1126/science.aar4142
– ident: e_1_2_9_22_1
  doi: 10.1038/s41598-019-55477-0
– ident: e_1_2_9_15_1
  doi: 10.1016/S0022-5320(67)80128-X
– ident: e_1_2_9_19_1
  doi: 10.1016/S0022-5320(65)80092-2
– ident: e_1_2_9_6_1
  doi: 10.1007/s00425-019-03315-y
– ident: e_1_2_9_43_1
  doi: 10.1104/pp.18.01557
– ident: e_1_2_9_45_1
  doi: 10.1016/j.chom.2018.10.001
– ident: e_1_2_9_28_1
  doi: 10.1016/j.cub.2018.01.059
– ident: e_1_2_9_51_1
  doi: 10.7717/peerj.5186
– ident: e_1_2_9_40_1
  doi: 10.1104/pp.16.01253
– ident: e_1_2_9_9_1
  doi: 10.1016/j.ymthe.2020.11.030
– ident: e_1_2_9_25_1
  doi: 10.1016/j.molp.2020.07.016
– ident: e_1_2_9_26_1
  doi: 10.1590/0102-33062016abb0279
– volume: 66
  start-page: 103
  year: 2016
  ident: e_1_2_9_46_1
  article-title: Plastid degeneration in Tillandsia albida (Bromeliaceae) and Lobivia rauschii (Cactaceae) provides evidence about the origin and destiny of multilamellar bodies in plants
  publication-title: Phytomorphology
  contributor:
    fullname: Doorn W. G.
– ident: e_1_2_9_32_1
  doi: 10.1016/j.jsb.2020.107474
– ident: e_1_2_9_24_1
  doi: 10.1126/sciadv.abc2508
– ident: e_1_2_9_7_1
  doi: 10.1016/j.tcb.2015.01.004
– ident: e_1_2_9_27_1
  doi: 10.1007/s00709-015-0877-3
– ident: e_1_2_9_44_1
  doi: 10.1002/ps.5686
– ident: e_1_2_9_10_1
  doi: 10.1093/jxb/ery255
– ident: e_1_2_9_47_1
  doi: 10.1038/nrm.2017.125
– ident: e_1_2_9_42_1
  doi: 10.1111/nph.16725
– ident: e_1_2_9_12_1
  doi: 10.1016/j.ceb.2014.05.008
– ident: e_1_2_9_37_1
  doi: 10.1093/jxb/erx355
– ident: e_1_2_9_41_1
  doi: 10.1016/j.pbi.2018.01.008
– ident: e_1_2_9_23_1
  doi: 10.1080/20013078.2019.1685634
– ident: e_1_2_9_54_1
  doi: 10.3402/jev.v4.28713
– ident: e_1_2_9_35_1
  doi: 10.1016/j.sajb.2018.08.018
– ident: e_1_2_9_34_1
  doi: 10.1128/JB.182.10.2985-2988.2000
– ident: e_1_2_9_4_1
  doi: 10.1105/tpc.18.00872
– ident: e_1_2_9_49_1
  doi: 10.3390/ijms20225695
– ident: e_1_2_9_16_1
  doi: 10.1016/j.chom.2018.11.007
– ident: e_1_2_9_17_1
  doi: 10.1016/j.chom.2019.07.021
– ident: e_1_2_9_13_1
  doi: 10.1016/j.tibtech.2020.05.012
– ident: e_1_2_9_14_1
  doi: 10.1038/s41598-021-85833-y
– ident: e_1_2_9_48_1
  doi: 10.1038/ncomms2886
– ident: e_1_2_9_18_1
  doi: 10.1038/s41477-019-0364-5
– ident: e_1_2_9_50_1
  doi: 10.3390/ijms20020357
– ident: e_1_2_9_21_1
  doi: 10.1126/science.aau6977
– ident: e_1_2_9_52_1
  doi: 10.1186/s12951-020-00656-9
– ident: e_1_2_9_38_1
  doi: 10.1007/s00709-015-0887-1
– ident: e_1_2_9_39_1
  doi: 10.1038/s41477-019-0365-4
– ident: e_1_2_9_30_1
  doi: 10.1002/mnfr.201300729
– ident: e_1_2_9_2_1
  doi: 10.1038/s41565-019-0591-y
– ident: e_1_2_9_11_1
  doi: 10.3390/plants9121777
– ident: e_1_2_9_8_1
  doi: 10.1007/s00709-019-01435-6
– ident: e_1_2_9_36_1
  doi: 10.1038/s41598-020-62920-0
– ident: e_1_2_9_20_1
  doi: 10.1080/15592324.2019.1581559
– ident: e_1_2_9_33_1
  doi: 10.1038/s41420-020-0271-6
– ident: e_1_2_9_29_1
  doi: 10.1104/pp.19.00381
SSID ssj0020300
Score 2.3271565
Snippet Extracellular vesicles (EVs) are nanometric, lipid membrane‐bound vesicles released outside the cell. Plants have not been traditionally regarded to have EVs...
Abstract Extracellular vesicles (EVs) are nanometric, lipid membrane‐bound vesicles released outside the cell. Plants have not been traditionally regarded to...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 515
SubjectTerms Apoplast
Cell walls
Domains
Electron microscopy
exosomes
Extracellular vesicles
Fluorescence
Fungi
Interfaces
Lipids
Membrane vesicles
Membranes
Nucleic acids
Organs
Plant pathology
Plant species
Ribonucleic acid
RNA
Ultracentrifugation
Vesicles
Title In situ and ex situ imaging of plant extracellular vesicles as nanovectors for cross‐domain communication
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjph.13022
https://www.proquest.com/docview/2559555027
Volume 169
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsQwFL2IbnThWxwdJYgLN5U2TV-4mlGH0YWIKLgQSp46jHaGaUfElZ_gN_olJmk7joIg7gJ90PTmJufenJwLsM9D6QfSo04cB65DIu1SjOkoxWUqogQLxrhV-7wIuzfk_Da4nYGj-ixMqQ8xSbgZz7DztXFwyvJpJx8-mFLG2My_nh8ZOtfJ1UQ6CuvBa_Mrie85pgJ9pSpkWTz1k9_Xoi-AOQ1T7TrTWYK7-gtLekn_cFywQ_76Q7zxn11YhsUKf6JWOWBWYEZmq7DQuh9VGhxyDfpnGcp7xRjRTCD5UrZ7T7acERooNHzU1tAXihE1aX_DY0XPMrf8OkRzlNFs8Gw3A3KkITGynf94exeDJ9rLEJ8-krION53T6-OuU9VkcDhOIg3GhTlLq80ehH4oXU61UUOuYqJxhQpV4Ek3ZDzmAiuhsSAJmEgipWSSMKGwwv4GzGaDTG4CopEviE9ULIlLpHATlyVEeApLrpJQxg3Yq62TDkvpjXQSsgwfUvvnGtCs7ZZW3penJkwKdOiFowYcWAP8_oL0_LJrG1t_v3Ub5rGhtliqWRNmi9FY7mhsUrBdmGu1T9qdXTsYPwFDzOSi
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5ED-rBt1ifi3jwEkk3mxd4KWqpT0QUvEjYpy1qWppUxJM_wd_oL3F3k9QqCOJtIQ-ymZndb2ZnvgHY4YH0fFmnThT5rkNCbVKMaS_FZSqkBAvGuGX7vAhaN-Tk1r8dg_2qFqbghxgG3Ixl2PXaGLgJSI9aea9tehljvQBPaHP3TOOGw6sheRTW6msjLLFXd0wP-pJXyObxVI9-342-IOYoULU7TXMW7qpvLBJMHvYGOdvjrz_oG_87iTmYKSEoahQ6Mw9jMl2A6cZ9v6ThkIvwcJyirJMPEE0Fki_FuPNkOxqhrkK9Ry0QfSHvUxP5N6ms6FlmNsUO0QylNO0-2_OADGlUjOzsP97eRfeJdlLER6tSluCmeXR90HLKtgwOx3Go8bgw5bRa8n7gBdLlVMs14CoiGlqoQPl16QaMR1xgJTQcJD4TcaiUjGMmFFbYW4bxtJvKFUA09ATxiIokcYkUbuyymIi6wpKrOJBRDbYr8SS9gn0jGXotvXZi_1wN1ivBJaUBZonxlHztfeGwBrtWAr-_IDm5bNnB6t9v3YLJ1vX5WXJ2fHG6BlPYZLrYzLN1GM_7A7mhoUrONq1GfgJFRedI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB6CC6U9pG_qNEmX0kMvMvJqtdKSU0hqbLeEUGrwoSD22RjHsrDkEHrKT8hvzC_J7kpy3EKh9LagB1rNzO43szPfAHyUVEex7vMgTeMwIIk1KSGslxIKk3CClRDSs32e0eGEjKfxdAeO2lqYmh9iE3BzluHXa2fghTLbRl5cuFbG2K6_jwi1yNchom8b7ihstdcHWFjUD1wL-oZWyKfxtI_-vhk9IMxtnOo3msEz-NF-Yp1fMu-tK9GTv_5gb_zPOTyH3QaAouNaY17Ajs5fwtPjn6uGhEO_gvkoR-WsWiOeK6Sv6_Fs4fsZoaVBxaUVh71QrbiL-7tEVnSlS59gh3iJcp4vr_xpQIksJkZ-8nc3t2q54LMcye2alNcwGXz-fjIMmqYMgcQssWhcuWJaK_eYRlSHklupUmlSYoGFoSbu65AKmUqFjbJgkMRCscQYzZhQBhscvYFOvsz1W0A8iRSJiEk1CYlWIQsFI6pvsJaGUZ124UMrnayouTeyjc9SXGT-z3Vhv5Vb1phfmTk_Kba-F0668MkL4O8vyMbnQz_Y-_db38Pj89NB9nV09uUdPMEuzcWnne1Dp1qt9YHFKZU49Pp4D7NT5fc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+situ+and+ex+situ+imaging+of+plant+extracellular+vesicles+as+nanovectors+for+cross%E2%80%90domain+communication&rft.jtitle=Journal+of+phytopathology&rft.au=Ki+Woo+Kim&rft.date=2021-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0931-1785&rft.eissn=1439-0434&rft.volume=169&rft.issue=9&rft.spage=515&rft.epage=524&rft_id=info:doi/10.1111%2Fjph.13022&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0931-1785&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0931-1785&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0931-1785&client=summon