Large amplitude oscillatory shear (LAOS) measurements as a promising tool to predict electrospinnability of pectin solutions

The response of the polymer solution to % strain is critical since the polymer solution is drawn by the electrical field during electrospinning process. To date, all studies relating electrospinning to rheological parameters have been conducted in the linear region where small strain values are appl...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied polymer science Vol. 139; no. 7
Main Authors Ozmen, Duygu, Akinalan Balik, Busra, Argin, Sanem, Yildirim‐Mavis, Cigdem, Toker, Omer Said
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 15.02.2022
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The response of the polymer solution to % strain is critical since the polymer solution is drawn by the electrical field during electrospinning process. To date, all studies relating electrospinning to rheological parameters have been conducted in the linear region where small strain values are applied to the polymer solutions. This is the first study attempting to correlate the behavior of the solutions in the nonlinear region with smooth nanofiber formation. For this aim, fiber forming solutions were prepared with pectin at different concentrations (3%, 4%, 5%, and 6%) and PEO with different molecular weights (600, 1000, and 2000 kDa). Deformation was applied in the range of 0.05% and 500% and normalized Lissajous curves were obtained. Both elastic and viscous curves confirmed one another, suggesting a profound contribution of PEO 2000 to the elasticity of the polymer solution at all pectin concentrations even at large strain values. This finding might explain why smooth fibers can only be achieved with PEO 2000 while only beaded fibers were formed with PEO 600 and PEO 1000. The results suggest that LAOS measurements might be used as a promising tool to predict whether a polymer solution can be electrospun into smooth nanofibers. To date, all rheological studies focus on the behaviour of the polymer solution in the linear region and there is still much to discover in terms of the relation between the behaviour of polymer solutions in the nonlinear region and the spinnability of that particular fiber‐forming solution. Our results showed that LAOS analyses might be used as a tool to predict the outcomes of the electrospinning process. This might decrease the time and cost of the preliminary rheological studies for smooth nanofiber formation.
AbstractList The response of the polymer solution to % strain is critical since the polymer solution is drawn by the electrical field during electrospinning process. To date, all studies relating electrospinning to rheological parameters have been conducted in the linear region where small strain values are applied to the polymer solutions. This is the first study attempting to correlate the behavior of the solutions in the nonlinear region with smooth nanofiber formation. For this aim, fiber forming solutions were prepared with pectin at different concentrations (3%, 4%, 5%, and 6%) and PEO with different molecular weights (600, 1000, and 2000 kDa). Deformation was applied in the range of 0.05% and 500% and normalized Lissajous curves were obtained. Both elastic and viscous curves confirmed one another, suggesting a profound contribution of PEO 2000 to the elasticity of the polymer solution at all pectin concentrations even at large strain values. This finding might explain why smooth fibers can only be achieved with PEO 2000 while only beaded fibers were formed with PEO 600 and PEO 1000. The results suggest that LAOS measurements might be used as a promising tool to predict whether a polymer solution can be electrospun into smooth nanofibers. To date, all rheological studies focus on the behaviour of the polymer solution in the linear region and there is still much to discover in terms of the relation between the behaviour of polymer solutions in the nonlinear region and the spinnability of that particular fiber‐forming solution. Our results showed that LAOS analyses might be used as a tool to predict the outcomes of the electrospinning process. This might decrease the time and cost of the preliminary rheological studies for smooth nanofiber formation.
Abstract The response of the polymer solution to % strain is critical since the polymer solution is drawn by the electrical field during electrospinning process. To date, all studies relating electrospinning to rheological parameters have been conducted in the linear region where small strain values are applied to the polymer solutions. This is the first study attempting to correlate the behavior of the solutions in the nonlinear region with smooth nanofiber formation. For this aim, fiber forming solutions were prepared with pectin at different concentrations (3%, 4%, 5%, and 6%) and PEO with different molecular weights (600, 1000, and 2000 kDa). Deformation was applied in the range of 0.05% and 500% and normalized Lissajous curves were obtained. Both elastic and viscous curves confirmed one another, suggesting a profound contribution of PEO 2000 to the elasticity of the polymer solution at all pectin concentrations even at large strain values. This finding might explain why smooth fibers can only be achieved with PEO 2000 while only beaded fibers were formed with PEO 600 and PEO 1000 . The results suggest that LAOS measurements might be used as a promising tool to predict whether a polymer solution can be electrospun into smooth nanofibers.
The response of the polymer solution to % strain is critical since the polymer solution is drawn by the electrical field during electrospinning process. To date, all studies relating electrospinning to rheological parameters have been conducted in the linear region where small strain values are applied to the polymer solutions. This is the first study attempting to correlate the behavior of the solutions in the nonlinear region with smooth nanofiber formation. For this aim, fiber forming solutions were prepared with pectin at different concentrations (3%, 4%, 5%, and 6%) and PEO with different molecular weights (600, 1000, and 2000 kDa). Deformation was applied in the range of 0.05% and 500% and normalized Lissajous curves were obtained. Both elastic and viscous curves confirmed one another, suggesting a profound contribution of PEO 2000 to the elasticity of the polymer solution at all pectin concentrations even at large strain values. This finding might explain why smooth fibers can only be achieved with PEO 2000 while only beaded fibers were formed with PEO 600 and PEO 1000. The results suggest that LAOS measurements might be used as a promising tool to predict whether a polymer solution can be electrospun into smooth nanofibers.
Author Ozmen, Duygu
Yildirim‐Mavis, Cigdem
Akinalan Balik, Busra
Toker, Omer Said
Argin, Sanem
Author_xml – sequence: 1
  givenname: Duygu
  orcidid: 0000-0002-1052-3599
  surname: Ozmen
  fullname: Ozmen, Duygu
  organization: Yildiz Technical University
– sequence: 2
  givenname: Busra
  orcidid: 0000-0002-7579-3565
  surname: Akinalan Balik
  fullname: Akinalan Balik, Busra
  organization: Yeditepe University
– sequence: 3
  givenname: Sanem
  orcidid: 0000-0002-2811-2202
  surname: Argin
  fullname: Argin, Sanem
  email: sanem.argin@yeditepe.edu.tr
  organization: Yeditepe University
– sequence: 4
  givenname: Cigdem
  orcidid: 0000-0002-5442-5851
  surname: Yildirim‐Mavis
  fullname: Yildirim‐Mavis, Cigdem
  organization: Haliç University
– sequence: 5
  givenname: Omer Said
  orcidid: 0000-0002-7304-2071
  surname: Toker
  fullname: Toker, Omer Said
  email: stoker@yildiz.edu.tr
  organization: Yildiz Technical University
BookMark eNp1kE1rwzAMhs3YYG23w_6BYZf1kNZ2nA8fS9kXFFrYdg6Oo3QuiZ3ZCSOwHz9v2XUgJJAevRLvHJ0bawChG0pWlBC2ll23SmiasDM0o0RkEU9Zfo5mYUajXIjkEs29PxFCaULSGfraSXcELNuu0f1QAbZe6aaRvXUj9u8gHb7bbfYvS9yC9IODFkzvsQyBO2db7bU54t7aJqTQgUqrHkMDqnfWd9oYWeogPWJb4y50tcHeNkOvrfFX6KKWjYfrv7pAbw_3r9unaLd_fN5udpFiImNRmpSQpXnJhcrzitcxV1ktqahiUFRWeRmTitQZD1MqSwgUTYUCEDIFRjMeL9DtpBs-_hjA98XJDs6EkwVLBOeMcU4DtZwoFT73Duqic7qVbiwoKX7MLYK5xa-5gV1P7KduYPwfLDaHw7TxDb91f8U
CitedBy_id crossref_primary_10_3390_foods12081563
Cites_doi 10.1007/s10856-005-4428-x
10.1007/s003970050126
10.1002/app.48294
10.1016/j.msec.2015.10.086
10.1007/s00397-013-0686-6
10.1016/j.tifs.2016.08.014
10.1122/1.2970095
10.1021/ie302385b
10.1016/j.foodhyd.2019.05.055
10.3109/02652048.2012.696153
10.1295/polymj.37.391
10.1002/jsfa.2740640304
10.1016/B978-0-08-100431-9.00005-X
10.1016/j.polymer.2006.04.050
10.1016/j.polymer.2010.03.061
10.1016/j.foodhyd.2020.106549
10.1166/jnn.2017.12540
10.1016/j.eurpolymj.2012.05.001
10.1016/j.foodhyd.2017.12.016
10.1146/annurev.matsci.36.011205.123537
10.1002/jbm.a.36459
10.1016/j.jcis.2019.08.025
10.1016/j.foodres.2014.03.002
10.1149/2.057203jes
10.1016/j.jcs.2017.08.014
10.1111/j.1750-3841.2009.01437.x
10.1016/j.carbpol.2014.02.026
10.1016/j.polymer.2005.03.011
10.3390/polym8090341
10.1016/j.jfoodeng.2017.02.027
ContentType Journal Article
Copyright 2021 Wiley Periodicals LLC.
2022 Wiley Periodicals LLC.
Copyright_xml – notice: 2021 Wiley Periodicals LLC.
– notice: 2022 Wiley Periodicals LLC.
DBID AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1002/app.51652
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1097-4628
EndPage n/a
ExternalDocumentID 10_1002_app_51652
APP51652
Genre article
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWB
RWI
RX1
RYL
SUPJJ
UB1
V2E
V8K
W8V
W99
WBKPD
WFSAM
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~KM
~WT
AAYXX
CITATION
7SR
8FD
JG9
ID FETCH-LOGICAL-c2972-65be768b49c88d4f34c7fa19d3ec1ad8b30d0f74c881abe9c8169cee9a6e21743
IEDL.DBID DR2
ISSN 0021-8995
IngestDate Fri Sep 13 07:45:51 EDT 2024
Fri Aug 23 00:42:32 EDT 2024
Sat Aug 24 00:59:21 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2972-65be768b49c88d4f34c7fa19d3ec1ad8b30d0f74c881abe9c8169cee9a6e21743
ORCID 0000-0002-5442-5851
0000-0002-1052-3599
0000-0002-7579-3565
0000-0002-7304-2071
0000-0002-2811-2202
PQID 2594422441
PQPubID 1006379
PageCount 8
ParticipantIDs proquest_journals_2594422441
crossref_primary_10_1002_app_51652
wiley_primary_10_1002_app_51652_APP51652
PublicationCentury 2000
PublicationDate February 15, 2022
PublicationDateYYYYMMDD 2022-02-15
PublicationDate_xml – month: 02
  year: 2022
  text: February 15, 2022
  day: 15
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Hoboken
PublicationTitle Journal of applied polymer science
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2010; 75
2017; 60
2019; 96
2013; 24
2006; 36
2008; 16
2006
2008; 52
2019; 107
2014; 62
2016; 59
2005; 46
1994; 64
2014; 107
1998; 37
2017; 208
2016; 3
2021; 113
2017; 17
2017; 77
2006; 47
2013; 30
2013; 52
2020; 137
2019; 556
2017
2012; 48
2005; 37
2005; 16
2012; 159
2016; 8
2010; 51
2018; 79
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_29_1
e_1_2_5_20_1
e_1_2_5_15_1
e_1_2_5_14_1
e_1_2_5_17_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_19_1
e_1_2_5_18_1
Lin H. Y. (e_1_2_5_5_1) 2013; 24
e_1_2_5_30_1
Dogan H. (e_1_2_5_22_1) 2006
e_1_2_5_31_1
Akjgari A. (e_1_2_5_7_1) 2016; 3
Young N. W. G. (e_1_2_5_32_1) 2008; 16
References_xml – volume: 30
  start-page: 64
  issue: 1
  year: 2013
  publication-title: J. Microencapsulation
– volume: 51
  start-page: 2611
  issue: 2
  year: 2010
  publication-title: Polymer
– volume: 47
  start-page: 4789
  issue: 13
  year: 2006
  publication-title: Polymer
– volume: 37
  start-page: 399
  year: 1998
  publication-title: Rheol. Acta
– volume: 16
  start-page: 933
  year: 2005
  publication-title: J. Mater. Sci. Mater. Med.
– volume: 46
  start-page: 3372
  issue: 10
  year: 2005
  publication-title: Polymer
– volume: 77
  start-page: 201
  year: 2017
  publication-title: J. Cereal Sci.
– volume: 96
  start-page: 481
  year: 2019
  publication-title: Food Hydrocolloids
– volume: 137
  year: 2020
  publication-title: J. Appl. Polym. Sci.
– start-page: 124
  year: 2006
– volume: 75
  start-page: 100
  issue: 1
  year: 2010
  publication-title: J. Food Sci.
– volume: 59
  start-page: 885
  year: 2016
  publication-title: Mater. Sci. Eng. C
– volume: 79
  start-page: 518
  year: 2018
  publication-title: Food Hydrocolloids
– volume: 48
  start-page: 1374
  issue: 8
  year: 2012
  publication-title: Eur. Polym. J.
– volume: 36
  start-page: 333
  issue: 1
  year: 2006
  publication-title: Annu. Rev. Mater. Res.
– volume: 37
  start-page: 391
  issue: 6
  year: 2005
  publication-title: Polym. J.
– volume: 8
  start-page: 341
  issue: 9
  year: 2016
  publication-title: Polymers
– volume: 208
  start-page: 77
  year: 2017
  publication-title: J. Food Eng.
– volume: 159
  start-page: K66
  issue: 3
  year: 2012
  publication-title: J. Electrochem. Soc.
– volume: 60
  start-page: 2
  year: 2017
  publication-title: Trends Food Sci. Technol.
– volume: 17
  start-page: 681
  year: 2017
  publication-title: J. Nanosci. Nanotechnol.
– volume: 3
  start-page: 43
  year: 2016
  publication-title: J. Nanomed.
– volume: 107
  start-page: 110
  year: 2014
  publication-title: Carbohydr. Polym.
– volume: 107
  start-page: 312
  issue: 2
  year: 2019
  publication-title: J. Biomed. Mater. Res. ‐Part A
– volume: 62
  start-page: 299
  year: 2014
  publication-title: Food Res. Int.
– volume: 16
  year: 2008
  publication-title: Annu. Trans. Nord. Rheol. Soc.
– volume: 52
  start-page: 8692
  issue: 26
  year: 2013
  publication-title: Ind. Eng. Chem. Res.
– volume: 64
  start-page: 271
  issue: 3
  year: 1994
  publication-title: J. Sci. Food Agric.
– volume: 24
  start-page: 4
  year: 2013
  publication-title: J. Biomater. Sci. Polym. Ed.
– volume: 52
  start-page: 1427
  issue: 6
  year: 2008
  publication-title: J. Rheol.
– volume: 113
  year: 2021
  publication-title: Food Hydrocolloids
– volume: 556
  start-page: 1
  year: 2019
  publication-title: J. Colloid Interface Sci.
– volume: 52
  start-page: 201
  year: 2013
  publication-title: Rheol. Acta
– start-page: 87
  year: 2017
– ident: e_1_2_5_3_1
  doi: 10.1007/s10856-005-4428-x
– ident: e_1_2_5_24_1
  doi: 10.1007/s003970050126
– volume: 24
  start-page: 4
  year: 2013
  ident: e_1_2_5_5_1
  publication-title: J. Biomater. Sci. Polym. Ed.
  contributor:
    fullname: Lin H. Y.
– ident: e_1_2_5_8_1
  doi: 10.1002/app.48294
– ident: e_1_2_5_10_1
  doi: 10.1016/j.msec.2015.10.086
– ident: e_1_2_5_26_1
  doi: 10.1007/s00397-013-0686-6
– ident: e_1_2_5_21_1
  doi: 10.1016/j.tifs.2016.08.014
– volume: 16
  year: 2008
  ident: e_1_2_5_32_1
  publication-title: Annu. Trans. Nord. Rheol. Soc.
  contributor:
    fullname: Young N. W. G.
– ident: e_1_2_5_27_1
  doi: 10.1122/1.2970095
– ident: e_1_2_5_28_1
  doi: 10.1021/ie302385b
– ident: e_1_2_5_35_1
  doi: 10.1016/j.foodhyd.2019.05.055
– ident: e_1_2_5_6_1
  doi: 10.3109/02652048.2012.696153
– ident: e_1_2_5_13_1
  doi: 10.1295/polymj.37.391
– ident: e_1_2_5_29_1
  doi: 10.1002/jsfa.2740640304
– ident: e_1_2_5_23_1
  doi: 10.1016/B978-0-08-100431-9.00005-X
– ident: e_1_2_5_15_1
  doi: 10.1016/j.polymer.2006.04.050
– ident: e_1_2_5_17_1
  doi: 10.1016/j.polymer.2010.03.061
– start-page: 124
  volume-title: Handbook of Food Engineering
  year: 2006
  ident: e_1_2_5_22_1
  contributor:
    fullname: Dogan H.
– volume: 3
  start-page: 43
  year: 2016
  ident: e_1_2_5_7_1
  publication-title: J. Nanomed.
  contributor:
    fullname: Akjgari A.
– ident: e_1_2_5_34_1
  doi: 10.1016/j.foodhyd.2020.106549
– ident: e_1_2_5_11_1
  doi: 10.1166/jnn.2017.12540
– ident: e_1_2_5_16_1
  doi: 10.1016/j.eurpolymj.2012.05.001
– ident: e_1_2_5_20_1
  doi: 10.1016/j.foodhyd.2017.12.016
– ident: e_1_2_5_2_1
  doi: 10.1146/annurev.matsci.36.011205.123537
– ident: e_1_2_5_30_1
  doi: 10.1002/jbm.a.36459
– ident: e_1_2_5_18_1
  doi: 10.1016/j.jcis.2019.08.025
– ident: e_1_2_5_19_1
  doi: 10.1016/j.foodres.2014.03.002
– ident: e_1_2_5_4_1
  doi: 10.1149/2.057203jes
– ident: e_1_2_5_33_1
  doi: 10.1016/j.jcs.2017.08.014
– ident: e_1_2_5_9_1
  doi: 10.1111/j.1750-3841.2009.01437.x
– ident: e_1_2_5_12_1
  doi: 10.1016/j.carbpol.2014.02.026
– ident: e_1_2_5_14_1
  doi: 10.1016/j.polymer.2005.03.011
– ident: e_1_2_5_31_1
  doi: 10.3390/polym8090341
– ident: e_1_2_5_25_1
  doi: 10.1016/j.jfoodeng.2017.02.027
SSID ssj0011506
Score 2.409606
Snippet The response of the polymer solution to % strain is critical since the polymer solution is drawn by the electrical field during electrospinning process. To...
Abstract The response of the polymer solution to % strain is critical since the polymer solution is drawn by the electrical field during electrospinning...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms biomaterials
Electrospinning
LAOS
Materials science
nanofiber
Nanofibers
Pectin
Polymers
Rheological properties
rheology
viscosity and viscoelasticity
Title Large amplitude oscillatory shear (LAOS) measurements as a promising tool to predict electrospinnability of pectin solutions
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapp.51652
https://www.proquest.com/docview/2594422441/abstract/
Volume 139
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jJz34LU6nBPEwD93WNklbPA1xDBk61MEOQknSFERth-0Oin-8L-nHpiCIUEpp05Dm5fX9XvLyewiduSJmnkOFZTuRZxEWg84xIS0XrF_kK8AMkQmQvWGjKbme0VkDXVR7YQp-iHrCTWuG-V9rBeci6y1JQ3UaLGozqv-_mkhPA6K7mjpKAx1WhHfYFvgUtGIV6ju9-s3vtmgJMFdhqrEzw030WLWwCC957i5y0ZUfP8gb__kJW2ijxJ94UAyYbdRQyQ5aX2El3EWfYx0djrmONdfMl1jzXcJo0cvxONMZsHFnPLi9P8evywnGDHM4MDQbBg5Ug_M0fYET3NFLQTku8-1k86ckKbjB33EaY7PRM8G1Buyh6fDq4XJklUkaLOkEnmMxKhS4LIIE0vcjErtEejEHEbtK2jzyhduP-rFH4KnNhYJSNgvAMgecKeMO7aNmkibqAOFIBDLwWeB4YDO5kIIqyYjw_MAWhPR5C51W4grnBRdHWLAuOyF0ZWi6soXalSDDUh2zEHw8QgCsELuFOkYiv1cQDiYTc3H496JHaM3R2yJ0ohjaRs38baGOAazk4sSMyi9feOe-
link.rule.ids 315,786,790,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_GfFAf_BanU4P4oA_d1jZJW_BliGPqnKITfJHSpCmI2g3XPSj-8V7SdZuCIEIpJU1DmrvL3SWX3wEcuiLhnsOEZTuxZ1GeoMxxIS0XtV_sK7QZYhMg2-Xte3rxwB5KcFKchcnxISYLbloyzHytBVwvSNenqKE6DxazOcMJeA7FnRmH6nYCHqVNHZ4HeNgWehWswBVqOPXJp9-10dTEnDVUjaZpLcNj0cc8wOS5NspETX78gG_870-swNLYBCXNnGdWoaTSNVicASZch8-ODhAnkQ431-CXRENeIsPoHXky1EmwyVGneX13TF6na4xDEuFFsN_IO9gMyfr9F7xhid4Nysg45c5w8JSmOTz4O-knxJz1TMlECDbgvnXWO21b4zwNlnQCz7E4Ewq9FkED6fsxTVwqvSRCKrtK2lHsC7cRNxKP4ls7Egpr2TxA5RxEXBmPaBPKaT9VW0BiEcjA54HjodqMhBRMSU6F5we2oLQRVeCgoFc4yOE4whx42QlxKEMzlBWoFpQMxxI5DNHNoxTtFWpX4MiQ5PcGwubNjXnY_nvVfZhv9646Yee8e7kDC44-JaHzxrAqlLO3kdpF2yUTe4ZFvwDlWOvg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED9EQfTBb3E6NYgP86G6pmna4tNwDj_GHH6AD0Jp0hREbYfrHhT_eC_p2qkgiFBKSdOQ5u5yd8nldwD7jki4R11h2TT2LMYTlDkupOWg9ot9hTZDbAJke_zsjl3cu_dTcFyehSnwIaoFNy0ZZr7WAj6Ik6MJaKhOg-Xa3MX5d4Zxh2qWbl9X2FHa0uFFfIdtoVPhlrBCTXpUffpdGU0szK92qlE0nUV4KLtYxJc8HY5ycSjff6A3_vMflmBhbICSVsExyzCl0hWY_wJLuAofXR0eTiIdbK6hL4kGvER20fvxZKhTYJNGt3V1c0BeJiuMQxLhRbDbyDnYDMmz7BlvWKL3gnIyTrgzHDymaQEO_kayhJiTnimpRGAN7jqntydn1jhLgyVp4FGLu0KhzyJYIH0_ZonDpJdESGNHSTuKfeE042biMXxrR0JhLZsHqJqDiCvjD63DdJqlagNILAIZ-DygHirNSEjhKsmZ8PzAFow1oxrsleQKBwUYR1jALtMQhzI0Q1mDeknIcCyPwxCdPMbQWmF2DRqGIr83ELb6ffOw-fequzDbb3fC7nnvcgvmqD4ioZPGuHWYzl9HahsNl1zsGAb9BD9g6o8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large+amplitude+oscillatory+shear+%28LAOS%29+measurements+as+a+promising+tool+to+predict+electrospinnability+of+pectin+solutions&rft.jtitle=Journal+of+applied+polymer+science&rft.au=Ozmen%2C+Duygu&rft.au=Balik%2C+Busra+Akinalan&rft.au=Argin%2C+Sanem&rft.au=Cigdem+Yildirim%E2%80%90Mavis&rft.date=2022-02-15&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0021-8995&rft.eissn=1097-4628&rft.volume=139&rft.issue=7&rft_id=info:doi/10.1002%2Fapp.51652&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8995&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8995&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8995&client=summon