Structured replacement policies for a system subject to random mission types
This paper optimizes condition‐based replacement policies for a mission‐oriented system. The key challenge in our problem is that the system does not work under a fixed mission type but is subject to an infinite sequence of random types of missions assigned in a Markovian manner, which is realistic...
Saved in:
Published in | Naval research logistics Vol. 71; no. 7; pp. 1055 - 1069 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.10.2024
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper optimizes condition‐based replacement policies for a mission‐oriented system. The key challenge in our problem is that the system does not work under a fixed mission type but is subject to an infinite sequence of random types of missions assigned in a Markovian manner, which is realistic in many practical situations. The mission process modulates the deterioration process. Taking advantage of the opportunities when missions are switched, condition monitoring is conducted to support replacement decision‐making. This paper considers two practical scenarios in which the type of the next mission is either available or unavailable at each decision epoch. The objective is to determine the optimal replacement decisions for both scenarios that minimize their long‐run expected average cost rates. The optimization problems are analyzed in the framework of the Markov decision process. The optimal decisions of both scenarios are proven to be of partially monotone control‐limit forms. Near‐optimal policies with multilevel thresholds are provided for more convenient decision‐making. The policy iteration algorithm is modified for efficient optimization. A numerical example is used to demonstrate the feasibility of the proposed approach. |
---|---|
AbstractList | This paper optimizes condition‐based replacement policies for a mission‐oriented system. The key challenge in our problem is that the system does not work under a fixed mission type but is subject to an infinite sequence of random types of missions assigned in a Markovian manner, which is realistic in many practical situations. The mission process modulates the deterioration process. Taking advantage of the opportunities when missions are switched, condition monitoring is conducted to support replacement decision‐making. This paper considers two practical scenarios in which the type of the next mission is either available or unavailable at each decision epoch. The objective is to determine the optimal replacement decisions for both scenarios that minimize their long‐run expected average cost rates. The optimization problems are analyzed in the framework of the Markov decision process. The optimal decisions of both scenarios are proven to be of partially monotone control‐limit forms. Near‐optimal policies with multilevel thresholds are provided for more convenient decision‐making. The policy iteration algorithm is modified for efficient optimization. A numerical example is used to demonstrate the feasibility of the proposed approach. |
Author | Zheng, Rui |
Author_xml | – sequence: 1 givenname: Rui orcidid: 0000-0002-8913-9265 surname: Zheng fullname: Zheng, Rui email: richter.zheng@mail.utoronto.ca organization: Hefei University of Technology |
BookMark | eNp1kDtPwzAUhS0EEm1h4B9YYmJIe-3EdjxWFS-pgoGH2CLHcSRXSRxsB5R_T6CdEEx3-b5zrs4cHXeuMwhdEFgSALrq1MeSUgrkCM0Io5BwweAYzSCXWQJcvp2ieQg7AOAZsBnaPkU_6Dh4U2Fv-kZp05ou4t41VlsTcO08VjiMIZoWh6HcGR1xdNirrnItbm0I1nU4jr0JZ-ikVk0w54e7QC8318-bu2T7eHu_WW8TTaUgiRCsBCkqDrrOJVNC1oIqnXJSiqzihAmoeM2JqQ0QqVSVE6mlrCsiGc1Lli7Q5T639-59MCEWOzf4bqosUpCS5hlLYaJWe0p7F4I3daFtVHH6Nnplm4JA8T1ZMU1W_Ew2GVe_jN7bVvnxT_aQ_mkbM_4PFg_r173xBd4xfS8 |
CitedBy_id | crossref_primary_10_1016_j_ress_2024_110483 crossref_primary_10_1016_j_cie_2024_110740 crossref_primary_10_1016_j_cie_2024_110550 crossref_primary_10_1002_nav_22225 |
Cites_doi | 10.1016/j.ress.2007.03.019 10.1016/j.ejor.2011.12.037 10.1016/j.ress.2021.107691 10.1016/j.ress.2016.08.009 10.1016/j.ijpe.2017.10.030 10.1016/j.strusafe.2008.06.015 10.1016/j.cie.2019.05.020 10.1080/15326349.2019.1577142 10.1016/j.ress.2013.06.005 10.1016/j.cie.2020.106322 10.1016/j.ress.2023.109507 10.1016/j.ejor.2021.07.007 10.1002/9780470316887 10.1016/j.ijpe.2017.08.003 10.1016/j.engfracmech.2015.05.027 10.1287/msom.2019.0773 10.1016/j.cie.2012.02.002 10.23919/JSEE.2022.000047 10.1080/03155986.1992.11732183 10.1016/j.ress.2021.108119 10.1016/j.cie.2016.10.008 10.1016/j.ejor.2021.03.044 10.1287/opre.1110.0912 10.1016/j.ejor.2017.02.044 10.1002/nav.21932 10.1016/j.ress.2012.10.015 10.1016/B978-0-12-598420-1.50010-6 10.1016/j.ejor.2019.09.047 10.1109/TIA.2019.2907666 10.1016/j.ress.2021.107743 10.1016/j.jmsy.2020.04.003 10.1109/TR.2010.2040534 10.1016/j.ejor.2022.05.020 10.1002/nav.21864 10.1016/j.ress.2021.107937 10.1287/ijoc.2018.0863 10.1016/j.ejor.2011.04.023 10.1002/nav.21922 |
ContentType | Journal Article |
Copyright | 2024 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2024 Wiley Periodicals LLC. |
DBID | AAYXX CITATION 7SC 7TB 7TN 8FD F1W FR3 H96 JQ2 KR7 L.G L7M L~C L~D |
DOI | 10.1002/nav.22201 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Computer and Information Systems Abstracts Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Military & Naval Science |
EISSN | 1520-6750 |
EndPage | 1069 |
ExternalDocumentID | 10_1002_nav_22201 NAV22201 |
Genre | researchArticle |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 72371095 – fundername: Anhui Provincial Natural Science Foundation funderid: 2308085MG225 |
GroupedDBID | --Z -~X .3N .GA .Y3 05W 0R~ 10A 123 186 1L6 1OB 1OC 1OL 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AEMOZ AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHQJS AITYG AIURR AIWBW AJBDE AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBA EBR EBS EBU EJD F00 F01 F04 FEDTE FSPIC G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6L MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ TH9 TN5 UAO UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WRC WWM WXSBR WYISQ XBAML XG1 XPP XV2 ZY4 ZZTAW ~IA ~WT AAYXX ADXHL AEYWJ AGHNM AGQPQ AGYGG CITATION 7SC 7TB 7TN 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F1W FR3 H96 JQ2 KR7 L.G L7M L~C L~D |
ID | FETCH-LOGICAL-c2971-775b097d60cf895a79f72ac361b74d61570d6f61efe019aad819c99fd19528b53 |
IEDL.DBID | DR2 |
ISSN | 0894-069X |
IngestDate | Fri Jul 25 10:38:31 EDT 2025 Thu Apr 24 22:55:57 EDT 2025 Tue Jul 01 01:00:20 EDT 2025 Wed Jan 22 17:14:41 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2971-775b097d60cf895a79f72ac361b74d61570d6f61efe019aad819c99fd19528b53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8913-9265 |
PQID | 3099284530 |
PQPubID | 1016414 |
PageCount | 15 |
ParticipantIDs | proquest_journals_3099284530 crossref_citationtrail_10_1002_nav_22201 crossref_primary_10_1002_nav_22201 wiley_primary_10_1002_nav_22201_NAV22201 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2024 2024-10-00 20241001 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: October 2024 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: New York |
PublicationTitle | Naval research logistics |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2022; 299 2011; 214 2010; 59 2019; 31 2021b; 214 2020; 141 2019; 55 2020; 285 2019; 35 2015; 142 2016; 102 2023; 304 2017; 193 1994 2011; 59 2022; 218 2017; 157 1992; 30 2018; 195 2009; 31 2021a; 295 2013; 119 2019; 66 2009; 94 2021; 213 2021; 216 2013; 111 2017; 261 1983 2020; 67 2020; 22 2022; 33 2023; 239 2021; 61 2022; 39 2019; 134 2012; 63 2012; 219 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 Tijms H. (e_1_2_9_32_1) 1994 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 Çekyay B. (e_1_2_9_9_1) 2022; 39 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 295 start-page: 1119 year: 2021a end-page: 1131 article-title: Joint condition‐based maintenance and load‐sharing optimization for two‐unit systems with economic dependency publication-title: European Journal of Operational Research – volume: 61 start-page: 819 year: 2021 end-page: 829 article-title: Preventive replacement policies with time of operations, mission durations, minimal repairs and maintenance triggering approaches publication-title: Journal of Manufacturing Systems – year: 1983 – volume: 63 start-page: 135 year: 2012 end-page: 149 article-title: An overview of time‐based and condition‐based maintenance in industrial application publication-title: Computers and Industrial Engineering – volume: 67 start-page: 548 year: 2020 end-page: 558 article-title: Application of Markov renewal theory and semi‐Markov decision processes in maintenance modeling and optimization of multi‐unit systems publication-title: Naval Research Logistics – volume: 59 start-page: 684 year: 2011 end-page: 695 article-title: Structured replacement policies for components with complex degradation processes and dedicated sensors publication-title: Operations Research – volume: 39 start-page: 1 year: 2022 end-page: 34 article-title: MTTF and availability of semi‐Markov missions with non‐identical generally distributed component lifetimes publication-title: Stochastic Models – volume: 31 start-page: 719 year: 2019 end-page: 731 article-title: Group maintenance: A restless bandits approach publication-title: INFORMS Journal on Computing – volume: 239 year: 2023 article-title: Multilevel preventive replacement for a system subject to internal deterioration, external shocks, and dynamic missions publication-title: Reliability Engineering and System Safety – volume: 214 year: 2021b article-title: Joint condition‐based maintenance and condition‐based production optimization publication-title: Reliability Engineering and System Safety – volume: 33 start-page: 474 year: 2022 end-page: 488 article-title: A dynamic condition‐based maintenance optimization model for mission‐oriented system based on inverse Gaussian degradation process publication-title: Journal of Systems Engineering and Electronics – volume: 141 year: 2020 article-title: Optimal condition‐based maintenance with general repair and two dependent failure modes publication-title: Computers and Industrial Engineering – volume: 102 start-page: 21 year: 2016 end-page: 32 article-title: An imperfect maintenance policy for mission‐oriented systems subject to degradation and external shocks publication-title: Computers and Industrial Engineering – volume: 66 start-page: 485 year: 2019 end-page: 501 article-title: Maintaining systems with heterogeneous spare parts publication-title: Naval Research Logistics – volume: 195 start-page: 319 year: 2018 end-page: 327 article-title: Condition‐based maintenance for systems with economic dependence and load sharing publication-title: International Journal of Production Economics – volume: 30 start-page: 172 year: 1992 end-page: 183 article-title: Optimal replacement in the proportional hazards model publication-title: INFOR: Information Systems and Operational Research – volume: 299 start-page: 898 year: 2022 end-page: 909 article-title: A numerical study of Markov decision process algorithms for multi‐component replacement problems publication-title: European Journal of Operational Research – volume: 111 start-page: 183 year: 2013 end-page: 194 article-title: A maintenance optimization model for mission‐oriented systems based on wiener degradation publication-title: Reliability Engineering and System Safety – volume: 304 start-page: 1011 year: 2023 end-page: 1021 article-title: A hybrid repair‐replacement policy in the proportional hazards model publication-title: European Journal of Operational Research – volume: 285 start-page: 805 year: 2020 end-page: 824 article-title: A review on maintenance optimization publication-title: European Journal of Operational Research – volume: 214 start-page: 331 year: 2011 end-page: 339 article-title: Optimal Bayesian fault prediction scheme for a partially observable system subject to random failure publication-title: European Journal of Operational Research – year: 1994 – volume: 55 start-page: 3394 year: 2019 end-page: 3401 article-title: A data‐driven approach for bearing fault prognostics publication-title: IEEE Transactions on Industry Applications – volume: 216 year: 2021 article-title: Reliability monitoring of systems with cumulative shock‐based deterioration process publication-title: Reliability Engineering & System Safety – volume: 213 year: 2021 article-title: Preventive replacement policies with multiple missions and maintenance triggering approaches publication-title: Reliability Engineering and System Safety – volume: 31 start-page: 234 year: 2009 end-page: 244 article-title: Modelling and optimizing imperfect maintenance of coatings on steel structures publication-title: Structural Safety – volume: 193 start-page: 381 year: 2017 end-page: 391 article-title: Comparison of two maintenance policies for a multi‐unit system considering production and demand rates publication-title: International Journal of Production Economics – volume: 261 start-page: 405 year: 2017 end-page: 420 article-title: Condition‐based maintenance policies for systems with multiple dependent components: A review publication-title: European Journal of Operational Research – volume: 218 year: 2022 article-title: Prognostics and health management (PHM): Where are we and where do we (need to) go in theory and practice publication-title: Reliability Engineering & System Safety – volume: 59 start-page: 231 year: 2010 end-page: 241 article-title: Effect of intrusion detection on reliability of mission‐oriented mobile group systems in mobile ad hoc networks publication-title: IEEE Transactions on Reliability – volume: 157 start-page: 54 year: 2017 end-page: 63 article-title: A review on condition‐based maintenance optimization models for stochastically deteriorating system publication-title: Reliability Engineering and System Safety – volume: 94 start-page: 2 year: 2009 end-page: 21 article-title: A survey of the application of gamma processes in maintenance publication-title: Reliability Engineering and System Safety – volume: 119 start-page: 218 year: 2013 end-page: 228 article-title: Reliability of non‐repairable phased‐mission systems with propagated failures publication-title: Reliability Engineering and System Safety – volume: 67 start-page: 453 year: 2020 end-page: 468 article-title: Reliability of a two‐dimensional demand‐based networked system with multistate components publication-title: Naval Research Logistics – volume: 134 start-page: 1 year: 2019 end-page: 10 article-title: Optimal condition‐based and age‐based opportunistic maintenance policy for a two‐unit series system publication-title: Computers and Industrial Engineering – volume: 35 start-page: 63 year: 2019 end-page: 88 article-title: Reliability of semi‐Markov missions publication-title: Stochastic Models – volume: 22 start-page: 792 year: 2020 end-page: 811 article-title: Condition‐based production planning: Adjusting production rates to balance output and failure risk publication-title: Manufacturing and Service Operations Management – volume: 219 start-page: 123 year: 2012 end-page: 133 article-title: Optimal maintenance of systems with Markovian mission and deterioration publication-title: European Journal of Operational Research – volume: 142 start-page: 21 year: 2015 end-page: 49 article-title: A gamma process model for the analysis of fatigue crack growth data publication-title: Engineering Fracture Mechanics – ident: e_1_2_9_33_1 doi: 10.1016/j.ress.2007.03.019 – ident: e_1_2_9_7_1 doi: 10.1016/j.ejor.2011.12.037 – ident: e_1_2_9_36_1 doi: 10.1016/j.ress.2021.107691 – ident: e_1_2_9_5_1 doi: 10.1016/j.ress.2016.08.009 – ident: e_1_2_9_26_1 doi: 10.1016/j.ijpe.2017.10.030 – ident: e_1_2_9_24_1 doi: 10.1016/j.strusafe.2008.06.015 – ident: e_1_2_9_34_1 doi: 10.1016/j.cie.2019.05.020 – ident: e_1_2_9_8_1 doi: 10.1080/15326349.2019.1577142 – ident: e_1_2_9_20_1 doi: 10.1016/j.ress.2013.06.005 – ident: e_1_2_9_38_1 doi: 10.1016/j.cie.2020.106322 – ident: e_1_2_9_40_1 doi: 10.1016/j.ress.2023.109507 – volume: 39 start-page: 1 year: 2022 ident: e_1_2_9_9_1 article-title: MTTF and availability of semi‐Markov missions with non‐identical generally distributed component lifetimes publication-title: Stochastic Models – ident: e_1_2_9_6_1 doi: 10.1016/j.ejor.2021.07.007 – ident: e_1_2_9_27_1 doi: 10.1002/9780470316887 – ident: e_1_2_9_29_1 doi: 10.1016/j.ijpe.2017.08.003 – ident: e_1_2_9_13_1 doi: 10.1016/j.engfracmech.2015.05.027 – ident: e_1_2_9_17_1 doi: 10.1287/msom.2019.0773 – ident: e_1_2_9_4_1 doi: 10.1016/j.cie.2012.02.002 – ident: e_1_2_9_21_1 doi: 10.23919/JSEE.2022.000047 – ident: e_1_2_9_23_1 doi: 10.1080/03155986.1992.11732183 – ident: e_1_2_9_41_1 doi: 10.1016/j.ress.2021.108119 – ident: e_1_2_9_22_1 doi: 10.1016/j.cie.2016.10.008 – ident: e_1_2_9_15_1 doi: 10.1016/j.ejor.2021.03.044 – volume-title: Stochastic models: An algorithmic approach year: 1994 ident: e_1_2_9_32_1 – ident: e_1_2_9_12_1 doi: 10.1287/opre.1110.0912 – ident: e_1_2_9_25_1 doi: 10.1016/j.ejor.2017.02.044 – ident: e_1_2_9_30_1 doi: 10.1002/nav.21932 – ident: e_1_2_9_14_1 doi: 10.1016/j.ress.2012.10.015 – ident: e_1_2_9_28_1 doi: 10.1016/B978-0-12-598420-1.50010-6 – ident: e_1_2_9_11_1 doi: 10.1016/j.ejor.2019.09.047 – ident: e_1_2_9_18_1 doi: 10.1109/TIA.2019.2907666 – ident: e_1_2_9_16_1 doi: 10.1016/j.ress.2021.107743 – ident: e_1_2_9_37_1 doi: 10.1016/j.jmsy.2020.04.003 – ident: e_1_2_9_10_1 doi: 10.1109/TR.2010.2040534 – ident: e_1_2_9_39_1 doi: 10.1016/j.ejor.2022.05.020 – ident: e_1_2_9_3_1 doi: 10.1002/nav.21864 – ident: e_1_2_9_31_1 doi: 10.1016/j.ress.2021.107937 – ident: e_1_2_9_2_1 doi: 10.1287/ijoc.2018.0863 – ident: e_1_2_9_19_1 doi: 10.1016/j.ejor.2011.04.023 – ident: e_1_2_9_35_1 doi: 10.1002/nav.21922 |
SSID | ssj0006405 |
Score | 2.4273674 |
Snippet | This paper optimizes condition‐based replacement policies for a mission‐oriented system. The key challenge in our problem is that the system does not work... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1055 |
SubjectTerms | Condition monitoring condition‐based maintenance Cost analysis Decisions Iterative algorithms Markov decision process Markov processes Missions Optimization Policies policy iteration random mission type structural analysis |
Title | Structured replacement policies for a system subject to random mission types |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnav.22201 https://www.proquest.com/docview/3099284530 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KJy--pdUqi4h4SbvJJrtZPBWxFLE9qJUehLCP5KK20rSC_npnN0lbRUG85TDJbnZmdj6GmW8QOhUQ44xSvkczm7oRse8JrjMvSJmvJRGSuf6K_oD1huH1KBrV0EXVC1PwQywSbtYz3H1tHVyqvL1CGirfWhDcXO-WrdWygOh2SR0Fa7jyxdhS3zIxqliFSNBevPk1Fi0B5ipMdXGmu4keqx0W5SVPrflMtfTHN_LGf_7CFtoo8SfuFAazjWrpeAfV-46re_qOz_BAgu3h0uV30c2dI5idT1ODp6mr4LL5RGyHO4BMjgH0YokLQmicz5XN6-DZBEMMNJMXDGZk83HYpnrzPTTsXt1f9rxyAoOnA8F9gN6RIqBMRnQWi0hykfFAasp8xUMDYIgTwzLmp1kKUFFKA_hCC5EZX0RBrCK6j9bGk3FaR5irUCtOMkpiFVIZK0aUDmO4Q6iBresGOq90keiSntxOyXhOCmLlIIHTStxpNdDJQvS14OT4SahZKTQp3TJPKOBhiMcRJbCc08zvH0gGnQf3cPB30UO0HgDoKYr9mmgNNJQeAWiZqWNnnZ9IReem |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8MwDI0mOMCFb7TBgAghxKVb2rRpI3GZgGnAtgNsaBdUJWl7ATa0bkjw63HSdhsIJMStB7dJYzt-suxnhE44xLhIStuiiU7d8MC2uK8Sy4mZrQThgpn-ik6XtfruzcAblNB50QuT8UPMEm7aM8x9rR1cJ6TrC6yh4q0G0U03by3rid6aOf_ybk4eBauYAsZAk98yPih4hYhTn736NRrNIeYiUDWRprmOHos9ZgUmT7XpRNbUxzf6xv_-xAZayyEobmQ2s4lK8XALlTuGrnv8jk9xV4D54dzrt1H73nDMTsdxhMexKeLSKUWs5zuATIoB92KBM05onE6lTu3gyQhDGIxGLxgsSafksM72pjuo37zqXbSsfAiDpRzu24C-PUlAn4yoJOCe8HniO0JRZkvfjQAP-SRiCbPjJAa0KEQEEENxnkQ295xAenQXLQ1Hw7iMsC9dJX2SUBJIl4pAMiKVG8A1QiPYuqqgs0IZocoZyvWgjOcw41Z2Qjit0JxWBR3PRF8zWo6fhKqFRsPcM9OQAiSGkOxRAssZ1fz-gbDbeDAPe38XPUIrrV6nHbavu7f7aNUBDJTV_lXREmgrPgAMM5GHxlQ_AcbM68I |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEF6KgvjiLa3nIiK-pN1cmyw-ibV4BvGiD0LYI_uitqVpBf31zm6SeqAgvuVhkt3szOx8DDPfILTLIMYpIVzH1yZ1w2LXYZHUjpdRV3LCOLX9FZcJPbkLzrpht4YOql6Ygh9iknAznmHva-PgA6Vbn0hD-UsTgpvp3ZoOKGFmbkP7-oM7Chax9Yux4b6lrFvRChGvNXn1azD6QJifcaoNNJ159FBtsagveWyOR6Ip376xN_7zHxbQXAlA8WFhMYuolvWWUP3SknUPX_EeTjgYHy59fhld3FiG2fEwU3iY2RIuk1DEZroDyOQYUC_muGCExvlYmMQOHvUxBEHVf8ZgRyYhh02uN19Bd53j26MTpxzB4EiPRS5g71AQ0CYlUscs5BHTkcelT10RBQrQUEQU1dTNdAZYkXMFAEMyppXLQi8Wob-Kpnr9XlZHOBKBFBHRPolF4PNYUCJkEMMl4ivYumyg_UoXqSz5yc2YjKe0YFb2Ujit1J5WA-1MRAcFKcdPQhuVQtPSL_PUB0AMATn0CSxnNfP7B9Lk8N4-rP1ddBvNXLU76cVpcr6OZj0AQEXh3waaAmVlmwBgRmLLGuo7GUDqcQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structured+replacement+policies+for+a+system+subject+to+random+mission+types&rft.jtitle=Naval+research+logistics&rft.au=Zheng%2C+Rui&rft.date=2024-10-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0894-069X&rft.eissn=1520-6750&rft.volume=71&rft.issue=7&rft.spage=1055&rft.epage=1069&rft_id=info:doi/10.1002%2Fnav.22201&rft.externalDBID=10.1002%252Fnav.22201&rft.externalDocID=NAV22201 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-069X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-069X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-069X&client=summon |