Structured replacement policies for a system subject to random mission types

This paper optimizes condition‐based replacement policies for a mission‐oriented system. The key challenge in our problem is that the system does not work under a fixed mission type but is subject to an infinite sequence of random types of missions assigned in a Markovian manner, which is realistic...

Full description

Saved in:
Bibliographic Details
Published inNaval research logistics Vol. 71; no. 7; pp. 1055 - 1069
Main Author Zheng, Rui
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.10.2024
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper optimizes condition‐based replacement policies for a mission‐oriented system. The key challenge in our problem is that the system does not work under a fixed mission type but is subject to an infinite sequence of random types of missions assigned in a Markovian manner, which is realistic in many practical situations. The mission process modulates the deterioration process. Taking advantage of the opportunities when missions are switched, condition monitoring is conducted to support replacement decision‐making. This paper considers two practical scenarios in which the type of the next mission is either available or unavailable at each decision epoch. The objective is to determine the optimal replacement decisions for both scenarios that minimize their long‐run expected average cost rates. The optimization problems are analyzed in the framework of the Markov decision process. The optimal decisions of both scenarios are proven to be of partially monotone control‐limit forms. Near‐optimal policies with multilevel thresholds are provided for more convenient decision‐making. The policy iteration algorithm is modified for efficient optimization. A numerical example is used to demonstrate the feasibility of the proposed approach.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0894-069X
1520-6750
DOI:10.1002/nav.22201