Perturbation ofBrachypodium distachyon CELLULOSE SYNTHASE A4or7results in abnormal cell walls

Cellulose is an integral component of the plant cell wall and accounts for approximately forty percent of total plant biomass but understanding its mechanism of synthesis remains elusive. CELLULOSE SYNTHASE A (CESA) proteins function as catalytic subunits of a rosette-shaped complex that synthesizes...

Full description

Saved in:
Bibliographic Details
Published inBMC plant biology Vol. 13; no. 1
Main Authors Handakumbura, Pubudu P, Matos, Dominick A, Osmont, Karen S, Harrington, Michael J, Heo, Kyuyoung, Kafle, Kabindra, Kim, Seong H, Baskin, Tobias I, Hazen, Samuel P
Format Journal Article
LanguageEnglish
Published BioMed Central Ltd 11.09.2013
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cellulose is an integral component of the plant cell wall and accounts for approximately forty percent of total plant biomass but understanding its mechanism of synthesis remains elusive. CELLULOSE SYNTHASE A (CESA) proteins function as catalytic subunits of a rosette-shaped complex that synthesizes cellulose at the plasma membrane. Arabidopsis thaliana and rice (Oryza sativa) secondary wall CESA loss-of-function mutants have weak stems and irregular or thin cell walls. Here, we identify candidates for secondary wall CESAs in Brachypodium distachyon as having similar amino acid sequence and expression to those characterized in A. thaliana, namely CESA4/7/8. To functionally characterize BdCESA4 and BdCESA7, we generated loss-of-function mutants using artificial microRNA constructs, specifically targeting each gene driven by a maize (Zea mays) ubiquitin promoter. Presence of the transgenes reduced BdCESA4 and BdCESA7 transcript abundance, as well as stem area, cell wall thickness of xylem and fibers, and the amount of crystalline cellulose in the cell wall. These results suggest BdCESA4 and BdCESA7 play a key role in B. distachyon secondary cell wall biosynthesis.
ISSN:1471-2229
1471-2229
DOI:10.1186/1471-2229-13-131