Phylogeography and diversification of an Amazonian understorey hummingbird: paraphyly and evidence for widespread cryptic speciation in the Plio‐Pleistocene

Straight‐billed Hermit Phaethornis bourcieri inhabits the understorey of upland terra firme forest throughout most of the Amazon basin. Currently, two allopatric taxa regarded as subspecies are recognized: P. b. bourcieri and P. b. major. However, the validity, interspecific limits and evolutionary...

Full description

Saved in:
Bibliographic Details
Published inIbis (London, England) Vol. 159; no. 4; pp. 778 - 791
Main Authors Araújo‐Silva, Lucas E., Miranda, Leonardo S., Carneiro, Lincoln, Aleixo, Alexandre
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.10.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Straight‐billed Hermit Phaethornis bourcieri inhabits the understorey of upland terra firme forest throughout most of the Amazon basin. Currently, two allopatric taxa regarded as subspecies are recognized: P. b. bourcieri and P. b. major. However, the validity, interspecific limits and evolutionary history of these taxa are not yet fully elucidated. We use molecular characters to propose a phylogenetic hypothesis for populations and taxa grouped under Phaethornis bourcieri. Our results showed that P. bourcieri is part of the ‘Ametrornis’ clade, along with Phaethornis philippii and Phaethornis koepckeae, and that the subspecies major is more closely related to the latter two species than to populations grouped under nominate bourcieri. Our phylogenetic hypotheses recovered three main reciprocally monophyletic clades under nominate bourcieri separated by the lower Negro River and the Branco River or the Branco–Negro interfluve (clades B and C) and the upper Amazon (Solimões) or lower Marañon/Ucayali Rivers (clades C and D). Based on multi‐locus phylogeographic and population genetics approaches, we show that P. b. major is best treated as a separate species, and that P. b. bourcieri probably includes more than one evolutionary species, whose limits remain uncertain. The diversification of the ‘Ametrornis’ clade (P. bourcieri, P. philippii and P. koepckeae) is centred in the Amazon and appears to be closely linked to the formation of the modern Amazon drainage during the Plio‐Pleistocene.
ISSN:0019-1019
1474-919X
DOI:10.1111/ibi.12500