Paper-Based Preconcentration and Isolation of Microvesicles and Exosomes
Microvesicles and exosomes are small membranous vesicles released to the extracellular environment and circulated throughout the body. Because they contain various parental cell-derived biomolecules such as DNA, mRNA, miRNA, proteins, and lipids, their enrichment and isolation are critical steps for...
Saved in:
Published in | Journal of visualized experiments no. 158 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
29.04.2020
|
Online Access | Get full text |
Cover
Loading…
Summary: | Microvesicles and exosomes are small membranous vesicles released to the extracellular environment and circulated throughout the body. Because they contain various parental cell-derived biomolecules such as DNA, mRNA, miRNA, proteins, and lipids, their enrichment and isolation are critical steps for their exploitation as potential biomarkers for clinical applications. However, conventional isolation methods (e.g., ultracentrifugation) cause significant loss and damage to microvesicles and exosomes. These methods also require multiple repetitive steps of ultracentrifugation, loading, and wasting of reagents. This article describes a detailed method to fabricate an origami-paper-based device (Exo-PAD) designed for the effective enrichment and isolation of microvesicles and exosomes in a simple manner. The unique design of the Exo-PAD, consisting of accordion-like multifolded layers with convergent sample areas, is integrated with the ion concentration polarization technique, thereby enabling fivefold enrichment of the microvesicles and exosomes on specific layers. In addition, the enriched microvesicles and exosomes are isolated by simply unfolding the Exo-PAD. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
ISSN: | 1940-087X 1940-087X |
DOI: | 10.3791/61292 |