Heat Shock Protein 70 Gene Transfection Protects Mitochondrial and Ventricular Function Against Ischemia-Reperfusion Injury

Upregulation of heat shock protein 70 (HSP70) is beneficial in cardioprotection against ischemia-reperfusion injury, but the mechanism of action is unclear. We studied the role of HSP70 overexpression through gene therapy on mitochondrial function and ventricular recovery in a protocol that mimics c...

Full description

Saved in:
Bibliographic Details
Published inCirculation (New York, N.Y.) Vol. 104; no. suppl 1; pp. I-303 - I-307
Main Authors Jayakumar, Jay, Suzuki, Ken, Sammut, Ivan A., Smolenski, Ryszard T., Khan, Mak, Latif, Najma, Abunasra, Haitham, Murtuza, Bari, Amrani, Mohamed, Yacoub, Magdi H.
Format Journal Article
LanguageEnglish
Published 18.09.2001
Online AccessGet full text

Cover

Loading…
Abstract Upregulation of heat shock protein 70 (HSP70) is beneficial in cardioprotection against ischemia-reperfusion injury, but the mechanism of action is unclear. We studied the role of HSP70 overexpression through gene therapy on mitochondrial function and ventricular recovery in a protocol that mimics clinical donor heart preservation.BACKGROUNDUpregulation of heat shock protein 70 (HSP70) is beneficial in cardioprotection against ischemia-reperfusion injury, but the mechanism of action is unclear. We studied the role of HSP70 overexpression through gene therapy on mitochondrial function and ventricular recovery in a protocol that mimics clinical donor heart preservation.Hemagglutinating virus of Japan (HVJ)-liposome technique was used to transfect isolated rat hearts via intracoronary infusion of either the HSP70 gene (HSP group, n=16) or no gene (CON group, n=16), which was heterotopically transplanted into recipient rats. Four days after surgery, hearts were either perfused on a Langendorff apparatus for 30 minutes at 37 degrees C (preischemia studies [n=8/group]) or perfused for 30 minutes at 37 degrees C, cardioplegically arrested for 4 hours at 4 degrees C, and reperfused for 30 minutes at 37 degrees C (postischemia studies [n=8/group]). Western blotting and immunohistochemistry confirmed HSP70 upregulation in the HSP group. Postischemic mitochondrial respiratory control indices (RCIs) were significantly better preserved in HSP than in CON hearts: NAD(+)-linked RCI values were 9.54+/-1.1 versus 10.62+/-0.46 before ischemia (NS) but 7.98+/-0.69 versus 1.28+/-0.15 after ischemia (P<0.05), and FAD-linked RCI values were 6.87+/-0.88 versus 6.73+/-0.93 before ischemia (NS) but 4.26+/-0.41 versus 1.34+/-0.13 after ischemia (P<0.05). Postischemic recovery of mechanical function was greater in HSP than in CON hearts: left ventricular developed pressure recovery was 72.4+/-6.4% versus 59.7+/-5.3% (P<0.05), maximum dP/dt recovery was 77.9+/-6.6% versus 52.3+/-5.2% (P<0.05), and minimum dP/dt recovery was 72.4+/-7.2% versus 54.8+/-6.9% (P<0.05). Creatine kinase release in coronary effluent after reperfusion was 0.20+/-0.04 versus 0.34+/-0.06 IU. min(-1). g wet wt(-1) (P<0.05) in HSP versus in CON hearts.METHODS AND RESULTSHemagglutinating virus of Japan (HVJ)-liposome technique was used to transfect isolated rat hearts via intracoronary infusion of either the HSP70 gene (HSP group, n=16) or no gene (CON group, n=16), which was heterotopically transplanted into recipient rats. Four days after surgery, hearts were either perfused on a Langendorff apparatus for 30 minutes at 37 degrees C (preischemia studies [n=8/group]) or perfused for 30 minutes at 37 degrees C, cardioplegically arrested for 4 hours at 4 degrees C, and reperfused for 30 minutes at 37 degrees C (postischemia studies [n=8/group]). Western blotting and immunohistochemistry confirmed HSP70 upregulation in the HSP group. Postischemic mitochondrial respiratory control indices (RCIs) were significantly better preserved in HSP than in CON hearts: NAD(+)-linked RCI values were 9.54+/-1.1 versus 10.62+/-0.46 before ischemia (NS) but 7.98+/-0.69 versus 1.28+/-0.15 after ischemia (P<0.05), and FAD-linked RCI values were 6.87+/-0.88 versus 6.73+/-0.93 before ischemia (NS) but 4.26+/-0.41 versus 1.34+/-0.13 after ischemia (P<0.05). Postischemic recovery of mechanical function was greater in HSP than in CON hearts: left ventricular developed pressure recovery was 72.4+/-6.4% versus 59.7+/-5.3% (P<0.05), maximum dP/dt recovery was 77.9+/-6.6% versus 52.3+/-5.2% (P<0.05), and minimum dP/dt recovery was 72.4+/-7.2% versus 54.8+/-6.9% (P<0.05). Creatine kinase release in coronary effluent after reperfusion was 0.20+/-0.04 versus 0.34+/-0.06 IU. min(-1). g wet wt(-1) (P<0.05) in HSP versus in CON hearts.HSP70 upregulation protects mitochondrial function after ischemia-reperfusion injury; this was associated with improved preservation of ventricular function. Protection of mitochondrial function may be important in the development of future cardioprotective strategies.CONCLUSIONSHSP70 upregulation protects mitochondrial function after ischemia-reperfusion injury; this was associated with improved preservation of ventricular function. Protection of mitochondrial function may be important in the development of future cardioprotective strategies.
AbstractList Upregulation of heat shock protein 70 (HSP70) is beneficial in cardioprotection against ischemia-reperfusion injury, but the mechanism of action is unclear. We studied the role of HSP70 overexpression through gene therapy on mitochondrial function and ventricular recovery in a protocol that mimics clinical donor heart preservation.BACKGROUNDUpregulation of heat shock protein 70 (HSP70) is beneficial in cardioprotection against ischemia-reperfusion injury, but the mechanism of action is unclear. We studied the role of HSP70 overexpression through gene therapy on mitochondrial function and ventricular recovery in a protocol that mimics clinical donor heart preservation.Hemagglutinating virus of Japan (HVJ)-liposome technique was used to transfect isolated rat hearts via intracoronary infusion of either the HSP70 gene (HSP group, n=16) or no gene (CON group, n=16), which was heterotopically transplanted into recipient rats. Four days after surgery, hearts were either perfused on a Langendorff apparatus for 30 minutes at 37 degrees C (preischemia studies [n=8/group]) or perfused for 30 minutes at 37 degrees C, cardioplegically arrested for 4 hours at 4 degrees C, and reperfused for 30 minutes at 37 degrees C (postischemia studies [n=8/group]). Western blotting and immunohistochemistry confirmed HSP70 upregulation in the HSP group. Postischemic mitochondrial respiratory control indices (RCIs) were significantly better preserved in HSP than in CON hearts: NAD(+)-linked RCI values were 9.54+/-1.1 versus 10.62+/-0.46 before ischemia (NS) but 7.98+/-0.69 versus 1.28+/-0.15 after ischemia (P<0.05), and FAD-linked RCI values were 6.87+/-0.88 versus 6.73+/-0.93 before ischemia (NS) but 4.26+/-0.41 versus 1.34+/-0.13 after ischemia (P<0.05). Postischemic recovery of mechanical function was greater in HSP than in CON hearts: left ventricular developed pressure recovery was 72.4+/-6.4% versus 59.7+/-5.3% (P<0.05), maximum dP/dt recovery was 77.9+/-6.6% versus 52.3+/-5.2% (P<0.05), and minimum dP/dt recovery was 72.4+/-7.2% versus 54.8+/-6.9% (P<0.05). Creatine kinase release in coronary effluent after reperfusion was 0.20+/-0.04 versus 0.34+/-0.06 IU. min(-1). g wet wt(-1) (P<0.05) in HSP versus in CON hearts.METHODS AND RESULTSHemagglutinating virus of Japan (HVJ)-liposome technique was used to transfect isolated rat hearts via intracoronary infusion of either the HSP70 gene (HSP group, n=16) or no gene (CON group, n=16), which was heterotopically transplanted into recipient rats. Four days after surgery, hearts were either perfused on a Langendorff apparatus for 30 minutes at 37 degrees C (preischemia studies [n=8/group]) or perfused for 30 minutes at 37 degrees C, cardioplegically arrested for 4 hours at 4 degrees C, and reperfused for 30 minutes at 37 degrees C (postischemia studies [n=8/group]). Western blotting and immunohistochemistry confirmed HSP70 upregulation in the HSP group. Postischemic mitochondrial respiratory control indices (RCIs) were significantly better preserved in HSP than in CON hearts: NAD(+)-linked RCI values were 9.54+/-1.1 versus 10.62+/-0.46 before ischemia (NS) but 7.98+/-0.69 versus 1.28+/-0.15 after ischemia (P<0.05), and FAD-linked RCI values were 6.87+/-0.88 versus 6.73+/-0.93 before ischemia (NS) but 4.26+/-0.41 versus 1.34+/-0.13 after ischemia (P<0.05). Postischemic recovery of mechanical function was greater in HSP than in CON hearts: left ventricular developed pressure recovery was 72.4+/-6.4% versus 59.7+/-5.3% (P<0.05), maximum dP/dt recovery was 77.9+/-6.6% versus 52.3+/-5.2% (P<0.05), and minimum dP/dt recovery was 72.4+/-7.2% versus 54.8+/-6.9% (P<0.05). Creatine kinase release in coronary effluent after reperfusion was 0.20+/-0.04 versus 0.34+/-0.06 IU. min(-1). g wet wt(-1) (P<0.05) in HSP versus in CON hearts.HSP70 upregulation protects mitochondrial function after ischemia-reperfusion injury; this was associated with improved preservation of ventricular function. Protection of mitochondrial function may be important in the development of future cardioprotective strategies.CONCLUSIONSHSP70 upregulation protects mitochondrial function after ischemia-reperfusion injury; this was associated with improved preservation of ventricular function. Protection of mitochondrial function may be important in the development of future cardioprotective strategies.
Author Latif, Najma
Jayakumar, Jay
Suzuki, Ken
Yacoub, Magdi H.
Sammut, Ivan A.
Abunasra, Haitham
Smolenski, Ryszard T.
Amrani, Mohamed
Khan, Mak
Murtuza, Bari
Author_xml – sequence: 1
  givenname: Jay
  surname: Jayakumar
  fullname: Jayakumar, Jay
– sequence: 2
  givenname: Ken
  surname: Suzuki
  fullname: Suzuki, Ken
– sequence: 3
  givenname: Ivan A.
  surname: Sammut
  fullname: Sammut, Ivan A.
– sequence: 4
  givenname: Ryszard T.
  surname: Smolenski
  fullname: Smolenski, Ryszard T.
– sequence: 5
  givenname: Mak
  surname: Khan
  fullname: Khan, Mak
– sequence: 6
  givenname: Najma
  surname: Latif
  fullname: Latif, Najma
– sequence: 7
  givenname: Haitham
  surname: Abunasra
  fullname: Abunasra, Haitham
– sequence: 8
  givenname: Bari
  surname: Murtuza
  fullname: Murtuza, Bari
– sequence: 9
  givenname: Mohamed
  surname: Amrani
  fullname: Amrani, Mohamed
– sequence: 10
  givenname: Magdi H.
  surname: Yacoub
  fullname: Yacoub, Magdi H.
BookMark eNp1kD1PwzAQhi0EEuVjZPfEFrDjxI7HCgGtBAJBYY0uzoW6pHaxnaHiz9MqTEhMp9P7vCfdc0IOnXdIyAVnV5xLfr00QiV-xXShRX5AJrzMi6wohT4kE8aYzpTI82NyEuNqt0qhygn5niEk-rr05pM-B5_QOqoYvUeHdBHAxQ5Nst6NoUmRPtrkzdK7NljoKbiWvqNLwZqhh0DvBjfy0w-wLiY6j2aJawvZC24wdEPch3O3GsL2jBx10Ec8_52n5O3udnEzyx6e7uc304fM5FqmrJWyydtKI9NNU3asAl6KNmdFDq2SElnDOXJRKChlU1VKmQo6U2oooGUMQJySy_HuJvivAWOq1zYa7Htw6IdYK84141zsQDGCJvgYA3a1sQn276QAtq85q_ei61F0PYretbI_rU2wawjbf_gfZ_mD2Q
CitedBy_id crossref_primary_10_1007_s12192_013_0429_8
crossref_primary_10_1152_ajprenal_00080_2006
crossref_primary_10_1379_CSC_194R_1
crossref_primary_10_1016_j_jacc_2005_09_038
crossref_primary_10_1152_ajpheart_00898_2003
crossref_primary_10_1152_ajpheart_00338_2008
crossref_primary_10_1152_ajpheart_00493_2007
crossref_primary_10_1016_j_yjmcc_2008_03_009
crossref_primary_10_1111_j_1440_1681_2006_04411_x
crossref_primary_10_1002_stem_230
crossref_primary_10_1007_s11010_006_9192_9
crossref_primary_10_1016_S1344_6223_03_00005_1
crossref_primary_10_1016_j_biopha_2016_04_051
crossref_primary_10_1016_j_ejheart_2007_03_007
crossref_primary_10_1194_jlr_R048090
crossref_primary_10_1007_s00421_005_0071_y
crossref_primary_10_1016_j_bbrc_2007_09_001
crossref_primary_10_1016_j_nut_2004_05_023
crossref_primary_10_1073_pnas_0404616101
crossref_primary_10_1213_ane_0b013e31817f6d40
crossref_primary_10_3389_fimmu_2020_599511
crossref_primary_10_1002_jcp_21461
crossref_primary_10_3390_ijms24119541
crossref_primary_10_1007_s00421_010_1617_1
crossref_primary_10_1016_j_bbamcr_2016_07_001
crossref_primary_10_1016_j_livsci_2010_01_008
crossref_primary_10_1016_j_surg_2006_11_005
crossref_primary_10_1016_j_lfs_2003_12_033
crossref_primary_10_1177_107424840501000405
crossref_primary_10_1016_j_lfs_2015_04_009
crossref_primary_10_1016_j_pharmthera_2014_05_005
crossref_primary_10_1113_expphysiol_2004_029801
crossref_primary_10_1002_wnan_60
crossref_primary_10_1097_00075198_200210000_00007
crossref_primary_10_1161_HYPERTENSIONAHA_111_00226
crossref_primary_10_1016_S0022_5223_03_00082_5
crossref_primary_10_1038_gt_2008_135
crossref_primary_10_1007_s12192_008_0066_9
crossref_primary_10_1111_jcmm_12491
crossref_primary_10_1177_0148607106030005373
crossref_primary_10_1016_j_ygeno_2022_110322
crossref_primary_10_1016_j_jprot_2012_04_001
crossref_primary_10_1111_j_1749_6632_2001_tb11358_x
crossref_primary_10_1016_j_bbamcr_2008_09_008
crossref_primary_10_1016_S0002_9440_10_62041_X
crossref_primary_10_1007_s10863_011_9367_2
crossref_primary_10_1016_j_jsgi_2004_09_004
crossref_primary_10_1152_ajpheart_00323_2006
crossref_primary_10_3109_02656730903070949
crossref_primary_10_1016_S1071_55760300074_1
crossref_primary_10_1007_s12192_008_0031_7
crossref_primary_10_1016_j_ejphar_2010_06_068
crossref_primary_10_1152_ajpheart_00596_2002
crossref_primary_10_1038_sj_bjp_0706396
crossref_primary_10_1152_ajpregu_00497_2004
crossref_primary_10_1016_S1071_9164_03_00129_5
crossref_primary_10_1016_j_febslet_2008_01_053
crossref_primary_10_1016_j_bbrc_2007_04_129
crossref_primary_10_1016_j_cbpb_2005_01_009
crossref_primary_10_1152_ajpheart_00005_2003
crossref_primary_10_1016_j_chemosphere_2018_10_002
crossref_primary_10_1161_01_HYP_0000120152_27263_87
crossref_primary_10_3390_ph3051456
crossref_primary_10_1016_j_amjcard_2003_10_003
crossref_primary_10_1016_j_ddmod_2006_10_013
crossref_primary_10_1016_j_freeradbiomed_2007_02_006
crossref_primary_10_1093_cvr_cvs278
crossref_primary_10_1152_ajpregu_00253_2012
crossref_primary_10_1080_00071660902806947
crossref_primary_10_1016_j_ijcard_2015_04_232
crossref_primary_10_1007_s00068_015_0504_1
crossref_primary_10_1111_j_1582_4934_2005_tb00492_x
crossref_primary_10_3892_mmr_2012_982
crossref_primary_10_1016_j_ymeth_2007_06_003
crossref_primary_10_1161_01_CIR_0000041145_30519_6B
crossref_primary_10_1016_j_ijcard_2006_04_076
crossref_primary_10_1038_ki_2010_527
crossref_primary_10_1182_blood_2003_01_0049
crossref_primary_10_1097_01_CCM_0000166357_10996_8A
crossref_primary_10_1074_jbc_M410838200
crossref_primary_10_1111_j_1399_6576_2006_00984_x
crossref_primary_10_1152_physiol_00030_2013
crossref_primary_10_1152_physiolgenomics_00073_2005
crossref_primary_10_1093_cvr_cvm023
crossref_primary_10_1152_ajpheart_00995_2008
crossref_primary_10_1152_ajprenal_00061_2013
crossref_primary_10_1093_cvr_cvq307
crossref_primary_10_1016_j_ijcard_2011_05_060
crossref_primary_10_1016_S0006_291X_02_02986_8
crossref_primary_10_15857_ksep_2020_29_3_248
crossref_primary_10_1016_j_transproceed_2006_10_176
crossref_primary_10_3748_wjg_v12_i5_780
crossref_primary_10_1002_bem_20258
crossref_primary_10_1161_JAHA_116_003820
crossref_primary_10_1016_j_cellsig_2022_110323
crossref_primary_10_1371_journal_pone_0300719
ContentType Journal Article
DBID AAYXX
CITATION
7X8
DOI 10.1161/hc37t1.094932
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1524-4539
EndPage I-307
ExternalDocumentID 10_1161_hc37t1_094932
GroupedDBID ---
.-D
.3C
.55
.GJ
.XZ
.Z2
01R
0R~
0ZK
18M
1J1
29B
2FS
2WC
354
40H
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
6PF
71W
77Y
7O~
AAAAV
AAAXR
AAFWJ
AAGIX
AAHPQ
AAIQE
AAJCS
AAMOA
AAMTA
AARTV
AASOK
AAUEB
AAWTL
AAXQO
AAYOK
AAYXX
ABBUW
ABDIG
ABJNI
ABOCM
ABPMR
ABPXF
ABQRW
ABXVJ
ABZAD
ACCJW
ACDDN
ACDOF
ACEWG
ACGFO
ACGFS
ACILI
ACOAL
ACRKK
ACWDW
ACWRI
ACXNZ
ACZKN
ADBBV
ADCYY
ADFPA
ADGGA
ADHPY
ADNKB
AE3
AE6
AEETU
AENEX
AFCHL
AFDTB
AFEXH
AFFNX
AFNMH
AFUWQ
AGINI
AHMBA
AHOMT
AHQNM
AHRYX
AHVBC
AIJEX
AINUH
AJCLO
AJIOK
AJNWD
AJNYG
AJZMW
ALKUP
ALMA_UNASSIGNED_HOLDINGS
AMJPA
AMNEI
ASPBG
AVWKF
AYCSE
AZFZN
BAWUL
BOYCO
BQLVK
BS7
BYPQX
C1A
C45
CITATION
CS3
DIK
DIWNM
DU5
DUNZO
E3Z
EBS
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
FW0
GX1
H0~
H13
HZ~
H~9
IKREB
IKYAY
IN~
J5H
JF9
JG8
JK3
JK8
K-A
K-F
K8S
KD2
KMI
KQ8
L-C
L7B
M18
N4W
N9A
NEJ
N~7
N~B
N~M
O9-
OAG
OAH
OBH
OCB
OCUKA
ODA
ODMTH
OGEVE
OHH
OHT
OHYEH
OK1
OL1
OLB
OLG
OLH
OLU
OLV
OLY
OLZ
OPUJH
ORVUJ
OUVQU
OVD
OVDNE
OVIDH
OVLEI
OVOZU
OWBYB
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P2P
PQQKQ
R58
RAH
RLZ
S4R
S4S
T8P
TEORI
TR2
UPT
V2I
VVN
W2D
W3M
W8F
WH7
WOQ
WOW
X3V
X3W
X7M
XXN
XYM
YFH
YOC
YSK
YYM
YYP
YZZ
ZFV
ZGI
ZXP
ZY1
ZZMQN
~H1
7X8
ID FETCH-LOGICAL-c296t-d66b2d89e09bb5f08a153d2042ad766e0b11e1347a56b8877c8afc59a4ad00aa3
ISSN 0009-7322
1524-4539
IngestDate Fri Jul 11 09:00:27 EDT 2025
Thu Apr 24 22:53:17 EDT 2025
Tue Jul 01 02:05:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue suppl 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c296t-d66b2d89e09bb5f08a153d2042ad766e0b11e1347a56b8877c8afc59a4ad00aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 71190113
PQPubID 23479
ParticipantIDs proquest_miscellaneous_71190113
crossref_citationtrail_10_1161_hc37t1_094932
crossref_primary_10_1161_hc37t1_094932
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2001-09-18
20010918
PublicationDateYYYYMMDD 2001-09-18
PublicationDate_xml – month: 09
  year: 2001
  text: 2001-09-18
  day: 18
PublicationDecade 2000
PublicationTitle Circulation (New York, N.Y.)
PublicationYear 2001
SSID ssj0006375
Score 2.080599
Snippet Upregulation of heat shock protein 70 (HSP70) is beneficial in cardioprotection against ischemia-reperfusion injury, but the mechanism of action is unclear. We...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage I-303
Title Heat Shock Protein 70 Gene Transfection Protects Mitochondrial and Ventricular Function Against Ischemia-Reperfusion Injury
URI https://www.proquest.com/docview/71190113
Volume 104
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbbFEovpU1amj51KLm43sov2T6GkLAJSQrNLuzNjGW5cVN7w659SHrrL-9Ilndt2NLHxRghjPF8npdm5iPkA7oA0kHDbke5cG0FChtYxm0uWRpwiTZEsyhcXPLJzD-bB_PR6Gevaqmp07G439pX8j9SxTWUq-qS_QfJrh-KC3iP8sUrShivfyXjiQrvV9eo0iw9b6GorJApUmSpqB_QIZUtEbgZxrCySvx_Ud9VmebqUDlzVe6oc4CwtJSNa4nDv0KBbqNVYOgrywLspbyVy7xZtYWR35phH_VRsRSGBWwbuU8v2XAGd3DTFXX3DqTum5shK_YVlGWj7cPpJtt6VaoiAkO0_cWUd3cZC0eVVwyVrOvbftAOMRrLLWudZm6ZiTsIupZmOrWcnsI99fSIhC2WgCtLcC28sHbGGMPGJo06mLh9-Tk5mZ2fJ9Pj-fQBeehiqKEbxuebMiHu6WHN6_fr5rRy59Pg4UO_ZmjWta8yfUqemCCDHraIeUZGstole4cV1Ivyjh5QXfarz1N2yaMLU12xR34oPFGNJ2rwRENGFZ5oH0-0wxMd4IkinmgPT7TDEzV4otvwRFs8PSezk-Pp0cQ25By2cGNe2xnnqZtFsWRxmgY5iwBtZ-aiDYAs5OpXdxyp-pQh4ClaslBEkIsgBh8yxgC8F2SnWlTyJaEMg4wwjII8S4Xv5wDMA8FE7MXgRR6T--Rj92kTYSbXKwKV74mOYLmTtJJIWknsk4P19tt2ZMvvNr7v5JSgUlUnZVDJRbNKQkf5yY736o87XpPHG4i_ITv1spFv0U2t03caR78Ai4qXKQ
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heat+shock+protein+70+gene+transfection+protects+mitochondrial+and+ventricular+function+against+ischemia-reperfusion+injury&rft.jtitle=Circulation+%28New+York%2C+N.Y.%29&rft.au=Jayakumar%2C+J&rft.au=Suzuki%2C+K&rft.au=Sammut%2C+I+A&rft.au=Smolenski%2C+R+T&rft.date=2001-09-18&rft.issn=1524-4539&rft.eissn=1524-4539&rft.volume=104&rft.issue=12+Suppl+1&rft.spage=I303&rft_id=info:doi/10.1161%2Fhc37t1.094932&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-7322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-7322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-7322&client=summon