Heat Shock Protein 70 Gene Transfection Protects Mitochondrial and Ventricular Function Against Ischemia-Reperfusion Injury
Upregulation of heat shock protein 70 (HSP70) is beneficial in cardioprotection against ischemia-reperfusion injury, but the mechanism of action is unclear. We studied the role of HSP70 overexpression through gene therapy on mitochondrial function and ventricular recovery in a protocol that mimics c...
Saved in:
Published in | Circulation (New York, N.Y.) Vol. 104; no. suppl 1; pp. I-303 - I-307 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
18.09.2001
|
Online Access | Get full text |
Cover
Loading…
Abstract | Upregulation of heat shock protein 70 (HSP70) is beneficial in cardioprotection against ischemia-reperfusion injury, but the mechanism of action is unclear. We studied the role of HSP70 overexpression through gene therapy on mitochondrial function and ventricular recovery in a protocol that mimics clinical donor heart preservation.BACKGROUNDUpregulation of heat shock protein 70 (HSP70) is beneficial in cardioprotection against ischemia-reperfusion injury, but the mechanism of action is unclear. We studied the role of HSP70 overexpression through gene therapy on mitochondrial function and ventricular recovery in a protocol that mimics clinical donor heart preservation.Hemagglutinating virus of Japan (HVJ)-liposome technique was used to transfect isolated rat hearts via intracoronary infusion of either the HSP70 gene (HSP group, n=16) or no gene (CON group, n=16), which was heterotopically transplanted into recipient rats. Four days after surgery, hearts were either perfused on a Langendorff apparatus for 30 minutes at 37 degrees C (preischemia studies [n=8/group]) or perfused for 30 minutes at 37 degrees C, cardioplegically arrested for 4 hours at 4 degrees C, and reperfused for 30 minutes at 37 degrees C (postischemia studies [n=8/group]). Western blotting and immunohistochemistry confirmed HSP70 upregulation in the HSP group. Postischemic mitochondrial respiratory control indices (RCIs) were significantly better preserved in HSP than in CON hearts: NAD(+)-linked RCI values were 9.54+/-1.1 versus 10.62+/-0.46 before ischemia (NS) but 7.98+/-0.69 versus 1.28+/-0.15 after ischemia (P<0.05), and FAD-linked RCI values were 6.87+/-0.88 versus 6.73+/-0.93 before ischemia (NS) but 4.26+/-0.41 versus 1.34+/-0.13 after ischemia (P<0.05). Postischemic recovery of mechanical function was greater in HSP than in CON hearts: left ventricular developed pressure recovery was 72.4+/-6.4% versus 59.7+/-5.3% (P<0.05), maximum dP/dt recovery was 77.9+/-6.6% versus 52.3+/-5.2% (P<0.05), and minimum dP/dt recovery was 72.4+/-7.2% versus 54.8+/-6.9% (P<0.05). Creatine kinase release in coronary effluent after reperfusion was 0.20+/-0.04 versus 0.34+/-0.06 IU. min(-1). g wet wt(-1) (P<0.05) in HSP versus in CON hearts.METHODS AND RESULTSHemagglutinating virus of Japan (HVJ)-liposome technique was used to transfect isolated rat hearts via intracoronary infusion of either the HSP70 gene (HSP group, n=16) or no gene (CON group, n=16), which was heterotopically transplanted into recipient rats. Four days after surgery, hearts were either perfused on a Langendorff apparatus for 30 minutes at 37 degrees C (preischemia studies [n=8/group]) or perfused for 30 minutes at 37 degrees C, cardioplegically arrested for 4 hours at 4 degrees C, and reperfused for 30 minutes at 37 degrees C (postischemia studies [n=8/group]). Western blotting and immunohistochemistry confirmed HSP70 upregulation in the HSP group. Postischemic mitochondrial respiratory control indices (RCIs) were significantly better preserved in HSP than in CON hearts: NAD(+)-linked RCI values were 9.54+/-1.1 versus 10.62+/-0.46 before ischemia (NS) but 7.98+/-0.69 versus 1.28+/-0.15 after ischemia (P<0.05), and FAD-linked RCI values were 6.87+/-0.88 versus 6.73+/-0.93 before ischemia (NS) but 4.26+/-0.41 versus 1.34+/-0.13 after ischemia (P<0.05). Postischemic recovery of mechanical function was greater in HSP than in CON hearts: left ventricular developed pressure recovery was 72.4+/-6.4% versus 59.7+/-5.3% (P<0.05), maximum dP/dt recovery was 77.9+/-6.6% versus 52.3+/-5.2% (P<0.05), and minimum dP/dt recovery was 72.4+/-7.2% versus 54.8+/-6.9% (P<0.05). Creatine kinase release in coronary effluent after reperfusion was 0.20+/-0.04 versus 0.34+/-0.06 IU. min(-1). g wet wt(-1) (P<0.05) in HSP versus in CON hearts.HSP70 upregulation protects mitochondrial function after ischemia-reperfusion injury; this was associated with improved preservation of ventricular function. Protection of mitochondrial function may be important in the development of future cardioprotective strategies.CONCLUSIONSHSP70 upregulation protects mitochondrial function after ischemia-reperfusion injury; this was associated with improved preservation of ventricular function. Protection of mitochondrial function may be important in the development of future cardioprotective strategies. |
---|---|
AbstractList | Upregulation of heat shock protein 70 (HSP70) is beneficial in cardioprotection against ischemia-reperfusion injury, but the mechanism of action is unclear. We studied the role of HSP70 overexpression through gene therapy on mitochondrial function and ventricular recovery in a protocol that mimics clinical donor heart preservation.BACKGROUNDUpregulation of heat shock protein 70 (HSP70) is beneficial in cardioprotection against ischemia-reperfusion injury, but the mechanism of action is unclear. We studied the role of HSP70 overexpression through gene therapy on mitochondrial function and ventricular recovery in a protocol that mimics clinical donor heart preservation.Hemagglutinating virus of Japan (HVJ)-liposome technique was used to transfect isolated rat hearts via intracoronary infusion of either the HSP70 gene (HSP group, n=16) or no gene (CON group, n=16), which was heterotopically transplanted into recipient rats. Four days after surgery, hearts were either perfused on a Langendorff apparatus for 30 minutes at 37 degrees C (preischemia studies [n=8/group]) or perfused for 30 minutes at 37 degrees C, cardioplegically arrested for 4 hours at 4 degrees C, and reperfused for 30 minutes at 37 degrees C (postischemia studies [n=8/group]). Western blotting and immunohistochemistry confirmed HSP70 upregulation in the HSP group. Postischemic mitochondrial respiratory control indices (RCIs) were significantly better preserved in HSP than in CON hearts: NAD(+)-linked RCI values were 9.54+/-1.1 versus 10.62+/-0.46 before ischemia (NS) but 7.98+/-0.69 versus 1.28+/-0.15 after ischemia (P<0.05), and FAD-linked RCI values were 6.87+/-0.88 versus 6.73+/-0.93 before ischemia (NS) but 4.26+/-0.41 versus 1.34+/-0.13 after ischemia (P<0.05). Postischemic recovery of mechanical function was greater in HSP than in CON hearts: left ventricular developed pressure recovery was 72.4+/-6.4% versus 59.7+/-5.3% (P<0.05), maximum dP/dt recovery was 77.9+/-6.6% versus 52.3+/-5.2% (P<0.05), and minimum dP/dt recovery was 72.4+/-7.2% versus 54.8+/-6.9% (P<0.05). Creatine kinase release in coronary effluent after reperfusion was 0.20+/-0.04 versus 0.34+/-0.06 IU. min(-1). g wet wt(-1) (P<0.05) in HSP versus in CON hearts.METHODS AND RESULTSHemagglutinating virus of Japan (HVJ)-liposome technique was used to transfect isolated rat hearts via intracoronary infusion of either the HSP70 gene (HSP group, n=16) or no gene (CON group, n=16), which was heterotopically transplanted into recipient rats. Four days after surgery, hearts were either perfused on a Langendorff apparatus for 30 minutes at 37 degrees C (preischemia studies [n=8/group]) or perfused for 30 minutes at 37 degrees C, cardioplegically arrested for 4 hours at 4 degrees C, and reperfused for 30 minutes at 37 degrees C (postischemia studies [n=8/group]). Western blotting and immunohistochemistry confirmed HSP70 upregulation in the HSP group. Postischemic mitochondrial respiratory control indices (RCIs) were significantly better preserved in HSP than in CON hearts: NAD(+)-linked RCI values were 9.54+/-1.1 versus 10.62+/-0.46 before ischemia (NS) but 7.98+/-0.69 versus 1.28+/-0.15 after ischemia (P<0.05), and FAD-linked RCI values were 6.87+/-0.88 versus 6.73+/-0.93 before ischemia (NS) but 4.26+/-0.41 versus 1.34+/-0.13 after ischemia (P<0.05). Postischemic recovery of mechanical function was greater in HSP than in CON hearts: left ventricular developed pressure recovery was 72.4+/-6.4% versus 59.7+/-5.3% (P<0.05), maximum dP/dt recovery was 77.9+/-6.6% versus 52.3+/-5.2% (P<0.05), and minimum dP/dt recovery was 72.4+/-7.2% versus 54.8+/-6.9% (P<0.05). Creatine kinase release in coronary effluent after reperfusion was 0.20+/-0.04 versus 0.34+/-0.06 IU. min(-1). g wet wt(-1) (P<0.05) in HSP versus in CON hearts.HSP70 upregulation protects mitochondrial function after ischemia-reperfusion injury; this was associated with improved preservation of ventricular function. Protection of mitochondrial function may be important in the development of future cardioprotective strategies.CONCLUSIONSHSP70 upregulation protects mitochondrial function after ischemia-reperfusion injury; this was associated with improved preservation of ventricular function. Protection of mitochondrial function may be important in the development of future cardioprotective strategies. |
Author | Latif, Najma Jayakumar, Jay Suzuki, Ken Yacoub, Magdi H. Sammut, Ivan A. Abunasra, Haitham Smolenski, Ryszard T. Amrani, Mohamed Khan, Mak Murtuza, Bari |
Author_xml | – sequence: 1 givenname: Jay surname: Jayakumar fullname: Jayakumar, Jay – sequence: 2 givenname: Ken surname: Suzuki fullname: Suzuki, Ken – sequence: 3 givenname: Ivan A. surname: Sammut fullname: Sammut, Ivan A. – sequence: 4 givenname: Ryszard T. surname: Smolenski fullname: Smolenski, Ryszard T. – sequence: 5 givenname: Mak surname: Khan fullname: Khan, Mak – sequence: 6 givenname: Najma surname: Latif fullname: Latif, Najma – sequence: 7 givenname: Haitham surname: Abunasra fullname: Abunasra, Haitham – sequence: 8 givenname: Bari surname: Murtuza fullname: Murtuza, Bari – sequence: 9 givenname: Mohamed surname: Amrani fullname: Amrani, Mohamed – sequence: 10 givenname: Magdi H. surname: Yacoub fullname: Yacoub, Magdi H. |
BookMark | eNp1kD1PwzAQhi0EEuVjZPfEFrDjxI7HCgGtBAJBYY0uzoW6pHaxnaHiz9MqTEhMp9P7vCfdc0IOnXdIyAVnV5xLfr00QiV-xXShRX5AJrzMi6wohT4kE8aYzpTI82NyEuNqt0qhygn5niEk-rr05pM-B5_QOqoYvUeHdBHAxQ5Nst6NoUmRPtrkzdK7NljoKbiWvqNLwZqhh0DvBjfy0w-wLiY6j2aJawvZC24wdEPch3O3GsL2jBx10Ec8_52n5O3udnEzyx6e7uc304fM5FqmrJWyydtKI9NNU3asAl6KNmdFDq2SElnDOXJRKChlU1VKmQo6U2oooGUMQJySy_HuJvivAWOq1zYa7Htw6IdYK84141zsQDGCJvgYA3a1sQn276QAtq85q_ei61F0PYretbI_rU2wawjbf_gfZ_mD2Q |
CitedBy_id | crossref_primary_10_1007_s12192_013_0429_8 crossref_primary_10_1152_ajprenal_00080_2006 crossref_primary_10_1379_CSC_194R_1 crossref_primary_10_1016_j_jacc_2005_09_038 crossref_primary_10_1152_ajpheart_00898_2003 crossref_primary_10_1152_ajpheart_00338_2008 crossref_primary_10_1152_ajpheart_00493_2007 crossref_primary_10_1016_j_yjmcc_2008_03_009 crossref_primary_10_1111_j_1440_1681_2006_04411_x crossref_primary_10_1002_stem_230 crossref_primary_10_1007_s11010_006_9192_9 crossref_primary_10_1016_S1344_6223_03_00005_1 crossref_primary_10_1016_j_biopha_2016_04_051 crossref_primary_10_1016_j_ejheart_2007_03_007 crossref_primary_10_1194_jlr_R048090 crossref_primary_10_1007_s00421_005_0071_y crossref_primary_10_1016_j_bbrc_2007_09_001 crossref_primary_10_1016_j_nut_2004_05_023 crossref_primary_10_1073_pnas_0404616101 crossref_primary_10_1213_ane_0b013e31817f6d40 crossref_primary_10_3389_fimmu_2020_599511 crossref_primary_10_1002_jcp_21461 crossref_primary_10_3390_ijms24119541 crossref_primary_10_1007_s00421_010_1617_1 crossref_primary_10_1016_j_bbamcr_2016_07_001 crossref_primary_10_1016_j_livsci_2010_01_008 crossref_primary_10_1016_j_surg_2006_11_005 crossref_primary_10_1016_j_lfs_2003_12_033 crossref_primary_10_1177_107424840501000405 crossref_primary_10_1016_j_lfs_2015_04_009 crossref_primary_10_1016_j_pharmthera_2014_05_005 crossref_primary_10_1113_expphysiol_2004_029801 crossref_primary_10_1002_wnan_60 crossref_primary_10_1097_00075198_200210000_00007 crossref_primary_10_1161_HYPERTENSIONAHA_111_00226 crossref_primary_10_1016_S0022_5223_03_00082_5 crossref_primary_10_1038_gt_2008_135 crossref_primary_10_1007_s12192_008_0066_9 crossref_primary_10_1111_jcmm_12491 crossref_primary_10_1177_0148607106030005373 crossref_primary_10_1016_j_ygeno_2022_110322 crossref_primary_10_1016_j_jprot_2012_04_001 crossref_primary_10_1111_j_1749_6632_2001_tb11358_x crossref_primary_10_1016_j_bbamcr_2008_09_008 crossref_primary_10_1016_S0002_9440_10_62041_X crossref_primary_10_1007_s10863_011_9367_2 crossref_primary_10_1016_j_jsgi_2004_09_004 crossref_primary_10_1152_ajpheart_00323_2006 crossref_primary_10_3109_02656730903070949 crossref_primary_10_1016_S1071_55760300074_1 crossref_primary_10_1007_s12192_008_0031_7 crossref_primary_10_1016_j_ejphar_2010_06_068 crossref_primary_10_1152_ajpheart_00596_2002 crossref_primary_10_1038_sj_bjp_0706396 crossref_primary_10_1152_ajpregu_00497_2004 crossref_primary_10_1016_S1071_9164_03_00129_5 crossref_primary_10_1016_j_febslet_2008_01_053 crossref_primary_10_1016_j_bbrc_2007_04_129 crossref_primary_10_1016_j_cbpb_2005_01_009 crossref_primary_10_1152_ajpheart_00005_2003 crossref_primary_10_1016_j_chemosphere_2018_10_002 crossref_primary_10_1161_01_HYP_0000120152_27263_87 crossref_primary_10_3390_ph3051456 crossref_primary_10_1016_j_amjcard_2003_10_003 crossref_primary_10_1016_j_ddmod_2006_10_013 crossref_primary_10_1016_j_freeradbiomed_2007_02_006 crossref_primary_10_1093_cvr_cvs278 crossref_primary_10_1152_ajpregu_00253_2012 crossref_primary_10_1080_00071660902806947 crossref_primary_10_1016_j_ijcard_2015_04_232 crossref_primary_10_1007_s00068_015_0504_1 crossref_primary_10_1111_j_1582_4934_2005_tb00492_x crossref_primary_10_3892_mmr_2012_982 crossref_primary_10_1016_j_ymeth_2007_06_003 crossref_primary_10_1161_01_CIR_0000041145_30519_6B crossref_primary_10_1016_j_ijcard_2006_04_076 crossref_primary_10_1038_ki_2010_527 crossref_primary_10_1182_blood_2003_01_0049 crossref_primary_10_1097_01_CCM_0000166357_10996_8A crossref_primary_10_1074_jbc_M410838200 crossref_primary_10_1111_j_1399_6576_2006_00984_x crossref_primary_10_1152_physiol_00030_2013 crossref_primary_10_1152_physiolgenomics_00073_2005 crossref_primary_10_1093_cvr_cvm023 crossref_primary_10_1152_ajpheart_00995_2008 crossref_primary_10_1152_ajprenal_00061_2013 crossref_primary_10_1093_cvr_cvq307 crossref_primary_10_1016_j_ijcard_2011_05_060 crossref_primary_10_1016_S0006_291X_02_02986_8 crossref_primary_10_15857_ksep_2020_29_3_248 crossref_primary_10_1016_j_transproceed_2006_10_176 crossref_primary_10_3748_wjg_v12_i5_780 crossref_primary_10_1002_bem_20258 crossref_primary_10_1161_JAHA_116_003820 crossref_primary_10_1016_j_cellsig_2022_110323 crossref_primary_10_1371_journal_pone_0300719 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1161/hc37t1.094932 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1524-4539 |
EndPage | I-307 |
ExternalDocumentID | 10_1161_hc37t1_094932 |
GroupedDBID | --- .-D .3C .55 .GJ .XZ .Z2 01R 0R~ 0ZK 18M 1J1 29B 2FS 2WC 354 40H 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 6PF 71W 77Y 7O~ AAAAV AAAXR AAFWJ AAGIX AAHPQ AAIQE AAJCS AAMOA AAMTA AARTV AASOK AAUEB AAWTL AAXQO AAYOK AAYXX ABBUW ABDIG ABJNI ABOCM ABPMR ABPXF ABQRW ABXVJ ABZAD ACCJW ACDDN ACDOF ACEWG ACGFO ACGFS ACILI ACOAL ACRKK ACWDW ACWRI ACXNZ ACZKN ADBBV ADCYY ADFPA ADGGA ADHPY ADNKB AE3 AE6 AEETU AENEX AFCHL AFDTB AFEXH AFFNX AFNMH AFUWQ AGINI AHMBA AHOMT AHQNM AHRYX AHVBC AIJEX AINUH AJCLO AJIOK AJNWD AJNYG AJZMW ALKUP ALMA_UNASSIGNED_HOLDINGS AMJPA AMNEI ASPBG AVWKF AYCSE AZFZN BAWUL BOYCO BQLVK BS7 BYPQX C1A C45 CITATION CS3 DIK DIWNM DU5 DUNZO E3Z EBS EX3 F2K F2L F2M F2N F5P FCALG FW0 GX1 H0~ H13 HZ~ H~9 IKREB IKYAY IN~ J5H JF9 JG8 JK3 JK8 K-A K-F K8S KD2 KMI KQ8 L-C L7B M18 N4W N9A NEJ N~7 N~B N~M O9- OAG OAH OBH OCB OCUKA ODA ODMTH OGEVE OHH OHT OHYEH OK1 OL1 OLB OLG OLH OLU OLV OLY OLZ OPUJH ORVUJ OUVQU OVD OVDNE OVIDH OVLEI OVOZU OWBYB OWU OWV OWW OWX OWY OWZ OXXIT P2P PQQKQ R58 RAH RLZ S4R S4S T8P TEORI TR2 UPT V2I VVN W2D W3M W8F WH7 WOQ WOW X3V X3W X7M XXN XYM YFH YOC YSK YYM YYP YZZ ZFV ZGI ZXP ZY1 ZZMQN ~H1 7X8 |
ID | FETCH-LOGICAL-c296t-d66b2d89e09bb5f08a153d2042ad766e0b11e1347a56b8877c8afc59a4ad00aa3 |
ISSN | 0009-7322 1524-4539 |
IngestDate | Fri Jul 11 09:00:27 EDT 2025 Thu Apr 24 22:53:17 EDT 2025 Tue Jul 01 02:05:22 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | suppl 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c296t-d66b2d89e09bb5f08a153d2042ad766e0b11e1347a56b8877c8afc59a4ad00aa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 71190113 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_71190113 crossref_citationtrail_10_1161_hc37t1_094932 crossref_primary_10_1161_hc37t1_094932 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2001-09-18 20010918 |
PublicationDateYYYYMMDD | 2001-09-18 |
PublicationDate_xml | – month: 09 year: 2001 text: 2001-09-18 day: 18 |
PublicationDecade | 2000 |
PublicationTitle | Circulation (New York, N.Y.) |
PublicationYear | 2001 |
SSID | ssj0006375 |
Score | 2.080599 |
Snippet | Upregulation of heat shock protein 70 (HSP70) is beneficial in cardioprotection against ischemia-reperfusion injury, but the mechanism of action is unclear. We... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | I-303 |
Title | Heat Shock Protein 70 Gene Transfection Protects Mitochondrial and Ventricular Function Against Ischemia-Reperfusion Injury |
URI | https://www.proquest.com/docview/71190113 |
Volume | 104 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbbFEovpU1amj51KLm43sov2T6GkLAJSQrNLuzNjGW5cVN7w659SHrrL-9Ilndt2NLHxRghjPF8npdm5iPkA7oA0kHDbke5cG0FChtYxm0uWRpwiTZEsyhcXPLJzD-bB_PR6Gevaqmp07G439pX8j9SxTWUq-qS_QfJrh-KC3iP8sUrShivfyXjiQrvV9eo0iw9b6GorJApUmSpqB_QIZUtEbgZxrCySvx_Ud9VmebqUDlzVe6oc4CwtJSNa4nDv0KBbqNVYOgrywLspbyVy7xZtYWR35phH_VRsRSGBWwbuU8v2XAGd3DTFXX3DqTum5shK_YVlGWj7cPpJtt6VaoiAkO0_cWUd3cZC0eVVwyVrOvbftAOMRrLLWudZm6ZiTsIupZmOrWcnsI99fSIhC2WgCtLcC28sHbGGMPGJo06mLh9-Tk5mZ2fJ9Pj-fQBeehiqKEbxuebMiHu6WHN6_fr5rRy59Pg4UO_ZmjWta8yfUqemCCDHraIeUZGstole4cV1Ivyjh5QXfarz1N2yaMLU12xR34oPFGNJ2rwRENGFZ5oH0-0wxMd4IkinmgPT7TDEzV4otvwRFs8PSezk-Pp0cQ25By2cGNe2xnnqZtFsWRxmgY5iwBtZ-aiDYAs5OpXdxyp-pQh4ClaslBEkIsgBh8yxgC8F2SnWlTyJaEMg4wwjII8S4Xv5wDMA8FE7MXgRR6T--Rj92kTYSbXKwKV74mOYLmTtJJIWknsk4P19tt2ZMvvNr7v5JSgUlUnZVDJRbNKQkf5yY736o87XpPHG4i_ITv1spFv0U2t03caR78Ai4qXKQ |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heat+shock+protein+70+gene+transfection+protects+mitochondrial+and+ventricular+function+against+ischemia-reperfusion+injury&rft.jtitle=Circulation+%28New+York%2C+N.Y.%29&rft.au=Jayakumar%2C+J&rft.au=Suzuki%2C+K&rft.au=Sammut%2C+I+A&rft.au=Smolenski%2C+R+T&rft.date=2001-09-18&rft.issn=1524-4539&rft.eissn=1524-4539&rft.volume=104&rft.issue=12+Suppl+1&rft.spage=I303&rft_id=info:doi/10.1161%2Fhc37t1.094932&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-7322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-7322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-7322&client=summon |