Heat Shock Protein 70 Gene Transfection Protects Mitochondrial and Ventricular Function Against Ischemia-Reperfusion Injury

Upregulation of heat shock protein 70 (HSP70) is beneficial in cardioprotection against ischemia-reperfusion injury, but the mechanism of action is unclear. We studied the role of HSP70 overexpression through gene therapy on mitochondrial function and ventricular recovery in a protocol that mimics c...

Full description

Saved in:
Bibliographic Details
Published inCirculation (New York, N.Y.) Vol. 104; no. suppl 1; pp. I-303 - I-307
Main Authors Jayakumar, Jay, Suzuki, Ken, Sammut, Ivan A., Smolenski, Ryszard T., Khan, Mak, Latif, Najma, Abunasra, Haitham, Murtuza, Bari, Amrani, Mohamed, Yacoub, Magdi H.
Format Journal Article
LanguageEnglish
Published 18.09.2001
Online AccessGet full text

Cover

Loading…
More Information
Summary:Upregulation of heat shock protein 70 (HSP70) is beneficial in cardioprotection against ischemia-reperfusion injury, but the mechanism of action is unclear. We studied the role of HSP70 overexpression through gene therapy on mitochondrial function and ventricular recovery in a protocol that mimics clinical donor heart preservation.BACKGROUNDUpregulation of heat shock protein 70 (HSP70) is beneficial in cardioprotection against ischemia-reperfusion injury, but the mechanism of action is unclear. We studied the role of HSP70 overexpression through gene therapy on mitochondrial function and ventricular recovery in a protocol that mimics clinical donor heart preservation.Hemagglutinating virus of Japan (HVJ)-liposome technique was used to transfect isolated rat hearts via intracoronary infusion of either the HSP70 gene (HSP group, n=16) or no gene (CON group, n=16), which was heterotopically transplanted into recipient rats. Four days after surgery, hearts were either perfused on a Langendorff apparatus for 30 minutes at 37 degrees C (preischemia studies [n=8/group]) or perfused for 30 minutes at 37 degrees C, cardioplegically arrested for 4 hours at 4 degrees C, and reperfused for 30 minutes at 37 degrees C (postischemia studies [n=8/group]). Western blotting and immunohistochemistry confirmed HSP70 upregulation in the HSP group. Postischemic mitochondrial respiratory control indices (RCIs) were significantly better preserved in HSP than in CON hearts: NAD(+)-linked RCI values were 9.54+/-1.1 versus 10.62+/-0.46 before ischemia (NS) but 7.98+/-0.69 versus 1.28+/-0.15 after ischemia (P<0.05), and FAD-linked RCI values were 6.87+/-0.88 versus 6.73+/-0.93 before ischemia (NS) but 4.26+/-0.41 versus 1.34+/-0.13 after ischemia (P<0.05). Postischemic recovery of mechanical function was greater in HSP than in CON hearts: left ventricular developed pressure recovery was 72.4+/-6.4% versus 59.7+/-5.3% (P<0.05), maximum dP/dt recovery was 77.9+/-6.6% versus 52.3+/-5.2% (P<0.05), and minimum dP/dt recovery was 72.4+/-7.2% versus 54.8+/-6.9% (P<0.05). Creatine kinase release in coronary effluent after reperfusion was 0.20+/-0.04 versus 0.34+/-0.06 IU. min(-1). g wet wt(-1) (P<0.05) in HSP versus in CON hearts.METHODS AND RESULTSHemagglutinating virus of Japan (HVJ)-liposome technique was used to transfect isolated rat hearts via intracoronary infusion of either the HSP70 gene (HSP group, n=16) or no gene (CON group, n=16), which was heterotopically transplanted into recipient rats. Four days after surgery, hearts were either perfused on a Langendorff apparatus for 30 minutes at 37 degrees C (preischemia studies [n=8/group]) or perfused for 30 minutes at 37 degrees C, cardioplegically arrested for 4 hours at 4 degrees C, and reperfused for 30 minutes at 37 degrees C (postischemia studies [n=8/group]). Western blotting and immunohistochemistry confirmed HSP70 upregulation in the HSP group. Postischemic mitochondrial respiratory control indices (RCIs) were significantly better preserved in HSP than in CON hearts: NAD(+)-linked RCI values were 9.54+/-1.1 versus 10.62+/-0.46 before ischemia (NS) but 7.98+/-0.69 versus 1.28+/-0.15 after ischemia (P<0.05), and FAD-linked RCI values were 6.87+/-0.88 versus 6.73+/-0.93 before ischemia (NS) but 4.26+/-0.41 versus 1.34+/-0.13 after ischemia (P<0.05). Postischemic recovery of mechanical function was greater in HSP than in CON hearts: left ventricular developed pressure recovery was 72.4+/-6.4% versus 59.7+/-5.3% (P<0.05), maximum dP/dt recovery was 77.9+/-6.6% versus 52.3+/-5.2% (P<0.05), and minimum dP/dt recovery was 72.4+/-7.2% versus 54.8+/-6.9% (P<0.05). Creatine kinase release in coronary effluent after reperfusion was 0.20+/-0.04 versus 0.34+/-0.06 IU. min(-1). g wet wt(-1) (P<0.05) in HSP versus in CON hearts.HSP70 upregulation protects mitochondrial function after ischemia-reperfusion injury; this was associated with improved preservation of ventricular function. Protection of mitochondrial function may be important in the development of future cardioprotective strategies.CONCLUSIONSHSP70 upregulation protects mitochondrial function after ischemia-reperfusion injury; this was associated with improved preservation of ventricular function. Protection of mitochondrial function may be important in the development of future cardioprotective strategies.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0009-7322
1524-4539
1524-4539
DOI:10.1161/hc37t1.094932