Broadening the temperature range for high thermoelectric performance of bulk polycrystalline strontium titanate by controlling the electronic transport properties

Strontium titanate (SrTiO 3 ) is a promising n-type thermoelectric material at high temperature. However, to date, its reported high dimensional figure of merit ( zT ) > 0.4 has only been achieved in a narrow temperature range near 1000 K. In this study, zT values of >0.4 were achieved in the...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. C, Materials for optical and electronic devices Vol. 6; no. 28; pp. 7594 - 7603
Main Authors Li, Jian-Bo, Wang, Jun, Li, Jing-Feng, Li, Yan, Yang, He, Yu, Hao-Yang, Ma, Xiao-Bo, Yaer, Xinba, Liu, Liang, Miao, Lei
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Strontium titanate (SrTiO 3 ) is a promising n-type thermoelectric material at high temperature. However, to date, its reported high dimensional figure of merit ( zT ) > 0.4 has only been achieved in a narrow temperature range near 1000 K. In this study, zT values of >0.4 were achieved in the broad temperature range of 769–1009 K in bulk SrTiO 3 co-doped with La and Nb with in situ precipitation of second phases of NbC and TiO 2−δ . The electronic transport properties of the samples were optimized by adjusting the doping ratio, resulting in a large power factor of 1.82 mW m −1 K −2 at 622 K for 7 mol% La–7 mol% Nb-doped SrTiO 3 . Notably, the power factor (PF) decreased more gradually with increasing temperature, resulting in a high PF of 1.28 mW m −1 K −2 even at 1009 K. In addition, precipitation of the second phases occurred during sintering of the mixture of La–Nb doped SrTiO 3 nano powder and carbon powder, which provided additional phonon scattering centers except for the phonon scattering centers of La and Nb point defects. This high thermoelectric performance achieved over a broad temperature range could be beneficial for broadening the range of application temperatures for bulk polycrystalline SrTiO 3 . Furthermore, the tailoring strategy of co-doping, an in situ second phase, and oxygen vacancies applied in this study may be applicable to other oxide thermoelectric materials.
AbstractList Strontium titanate (SrTiO3) is a promising n-type thermoelectric material at high temperature. However, to date, its reported high dimensional figure of merit (zT) > 0.4 has only been achieved in a narrow temperature range near 1000 K. In this study, zT values of >0.4 were achieved in the broad temperature range of 769–1009 K in bulk SrTiO3 co-doped with La and Nb with in situ precipitation of second phases of NbC and TiO2−δ. The electronic transport properties of the samples were optimized by adjusting the doping ratio, resulting in a large power factor of 1.82 mW m−1 K−2 at 622 K for 7 mol% La–7 mol% Nb-doped SrTiO3. Notably, the power factor (PF) decreased more gradually with increasing temperature, resulting in a high PF of 1.28 mW m−1 K−2 even at 1009 K. In addition, precipitation of the second phases occurred during sintering of the mixture of La–Nb doped SrTiO3 nano powder and carbon powder, which provided additional phonon scattering centers except for the phonon scattering centers of La and Nb point defects. This high thermoelectric performance achieved over a broad temperature range could be beneficial for broadening the range of application temperatures for bulk polycrystalline SrTiO3. Furthermore, the tailoring strategy of co-doping, an in situ second phase, and oxygen vacancies applied in this study may be applicable to other oxide thermoelectric materials.
Strontium titanate (SrTiO 3 ) is a promising n-type thermoelectric material at high temperature. However, to date, its reported high dimensional figure of merit ( zT ) > 0.4 has only been achieved in a narrow temperature range near 1000 K. In this study, zT values of >0.4 were achieved in the broad temperature range of 769–1009 K in bulk SrTiO 3 co-doped with La and Nb with in situ precipitation of second phases of NbC and TiO 2−δ . The electronic transport properties of the samples were optimized by adjusting the doping ratio, resulting in a large power factor of 1.82 mW m −1 K −2 at 622 K for 7 mol% La–7 mol% Nb-doped SrTiO 3 . Notably, the power factor (PF) decreased more gradually with increasing temperature, resulting in a high PF of 1.28 mW m −1 K −2 even at 1009 K. In addition, precipitation of the second phases occurred during sintering of the mixture of La–Nb doped SrTiO 3 nano powder and carbon powder, which provided additional phonon scattering centers except for the phonon scattering centers of La and Nb point defects. This high thermoelectric performance achieved over a broad temperature range could be beneficial for broadening the range of application temperatures for bulk polycrystalline SrTiO 3 . Furthermore, the tailoring strategy of co-doping, an in situ second phase, and oxygen vacancies applied in this study may be applicable to other oxide thermoelectric materials.
Author Miao, Lei
Yaer, Xinba
Ma, Xiao-Bo
Li, Jing-Feng
Li, Yan
Liu, Liang
Yang, He
Wang, Jun
Yu, Hao-Yang
Li, Jian-Bo
Author_xml – sequence: 1
  givenname: Jian-Bo
  surname: Li
  fullname: Li, Jian-Bo
  organization: School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot, China
– sequence: 2
  givenname: Jun
  orcidid: 0000-0002-5758-2238
  surname: Wang
  fullname: Wang, Jun
  organization: School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot, China
– sequence: 3
  givenname: Jing-Feng
  orcidid: 0000-0002-0185-0512
  surname: Li
  fullname: Li, Jing-Feng
  organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
– sequence: 4
  givenname: Yan
  surname: Li
  fullname: Li, Yan
  organization: School of Chemical Engineering, Kang Ba Shi Qu, Ordos, Ordos Institute of Technology, Ordos, China
– sequence: 5
  givenname: He
  surname: Yang
  fullname: Yang, He
  organization: School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot, China
– sequence: 6
  givenname: Hao-Yang
  surname: Yu
  fullname: Yu, Hao-Yang
  organization: School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot, China
– sequence: 7
  givenname: Xiao-Bo
  surname: Ma
  fullname: Ma, Xiao-Bo
  organization: School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot, China
– sequence: 8
  givenname: Xinba
  surname: Yaer
  fullname: Yaer, Xinba
  organization: School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot, China
– sequence: 9
  givenname: Liang
  surname: Liu
  fullname: Liu, Liang
  organization: School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot, China
– sequence: 10
  givenname: Lei
  surname: Miao
  fullname: Miao, Lei
  organization: Guangxi Key Laboratory of Information Material, Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin
BookMark eNpFkctOwzAQRS0EEqV0wxdYYodUcB52kmWpeEmV2JR1ZDvjNiWxw9hZ5Hf4UlwVwWxmNHN0z2KuyLl1Fgi5Sdh9wrLqYV1u1yxNMrY6I7OUcbYseJaf_82puCQL7w8sVpmIUlQz8v2ITjZgW7ujYQ80QD8AyjAiUJR2B9Q4pPt2tz-esXfQgQ7YahqxeOql1UCdoWrsPunguknj5IPsutYC9QGdDe3Y09AGaWUAqiaq4w7dkTg5T5HOxtAQnX5wGOiALhpCC_6aXBjZeVj89jn5eH7arl-Xm_eXt_Vqs9RpJcJSgQKW50IIaRhvilyrxqRJ2eSqrAoDypQiYyYzTQRkyUtepBUXSvGcK53xbE5uT7lR_TWCD_XBjWijsk5ZkVRFnlR5pO5OlEbnPYKpB2x7iVOdsPr4hvr_DdkPAq6BvQ
CitedBy_id crossref_primary_10_1016_j_cej_2021_130668
crossref_primary_10_1021_acsaem_3c01111
crossref_primary_10_1016_j_mtchem_2020_100384
crossref_primary_10_1002_adfm_202213144
crossref_primary_10_1016_j_jeurceramsoc_2023_10_028
crossref_primary_10_1016_j_ceramint_2024_06_103
crossref_primary_10_1016_j_jallcom_2020_154958
crossref_primary_10_1016_j_vacuum_2023_112196
crossref_primary_10_1016_j_solidstatesciences_2021_106774
crossref_primary_10_1016_j_jeurceramsoc_2022_02_053
crossref_primary_10_1021_acssuschemeng_0c03849
crossref_primary_10_3390_ma15020487
crossref_primary_10_1002_cplu_202000113
crossref_primary_10_1016_j_jeurceramsoc_2019_09_024
crossref_primary_10_1039_D2MH01332K
crossref_primary_10_1142_S1793604722510547
crossref_primary_10_1016_j_heliyon_2024_e29121
crossref_primary_10_1016_j_jallcom_2021_162858
crossref_primary_10_1002_advs_202307058
crossref_primary_10_1016_j_physe_2022_115292
crossref_primary_10_1039_D2TA06576B
crossref_primary_10_1039_C9TA13824B
crossref_primary_10_1016_j_cej_2024_151895
crossref_primary_10_1039_D2MA00404F
crossref_primary_10_1016_j_jmat_2022_02_002
crossref_primary_10_1016_j_cej_2021_131121
crossref_primary_10_1016_j_jeurceramsoc_2024_02_022
crossref_primary_10_1088_1674_1056_abe9a9
crossref_primary_10_1016_j_materresbull_2019_110650
crossref_primary_10_1021_acsami_9b07313
crossref_primary_10_1021_acsami_9b20090
crossref_primary_10_15541_jim20230288
crossref_primary_10_1142_S1793604720510017
crossref_primary_10_1016_j_catcom_2022_106436
crossref_primary_10_1016_j_nanoen_2020_105195
crossref_primary_10_1016_j_actamat_2022_117785
crossref_primary_10_1021_acsami_0c16084
crossref_primary_10_1016_j_ceramint_2023_03_031
crossref_primary_10_1002_tcr_202200195
crossref_primary_10_15541_jim20210631
crossref_primary_10_1016_j_jallcom_2020_158552
crossref_primary_10_1016_j_jallcom_2024_174242
Cites_doi 10.1021/acs.chemmater.5b04616
10.1002/adma.201705942
10.1103/PhysRev.161.822
10.1021/cm504398d
10.1038/nmat1821
10.1021/jacs.6b04181
10.1021/acsami.7b14231
10.1038/Nature11439
10.1002/aelm.201600019
10.1021/acsenergylett.7b00197
10.1039/B201942F
10.1002/adma.201501030
10.1016/j.nanoen.2017.04.003
10.1039/c4ra06871h
10.1107/S0567739476001551
10.1021/ic200178x
10.1016/j.jallcom.2010.03.049
10.1002/aenm.201702333
10.1111/j.1551-2916.2010.04185.x
10.1103/PhysRevB.63.113104
10.1016/j.electacta.2006.03.096
10.1111/j.1151-2916.1985.tb15292.x
10.1002/aelm.201600171
10.1103/PhysRev.133.A1143
10.1038/nature23667
10.1063/1.1847723
10.1016/S0008-6223(03)00340-3
10.1002/adma.201202919
10.1021/jacs.6b07010
10.1021/jp409872e
10.1063/1.2035889
10.1002/aenm.201100149
10.1073/pnas.1711725114
10.1039/c6ta06033a
10.1039/c6ta09860f
10.1021/jp401132g
10.1039/c5tc02016f
10.1063/1.1415766
10.1126/science.aad3749
10.1111/jace.13276
10.1039/c5ee01147g
10.1126/science.1156446
10.1039/c4cp04127e
10.1039/C3TA14699E
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2018
Copyright_xml – notice: Copyright Royal Society of Chemistry 2018
DBID AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1039/C8TC02130A
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 2050-7534
EndPage 7603
ExternalDocumentID 10_1039_C8TC02130A
GroupedDBID -JG
0-7
0R~
4.4
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CITATION
EBS
ECGLT
EE0
EF-
EJD
GGIMP
GNO
H13
HZ~
H~N
J3G
J3H
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
ROL
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c296t-bebe044666af05d74cbdf218d4b897febf8630f3fd6afa858572956bb545bc353
ISSN 2050-7526
IngestDate Thu Oct 10 15:52:51 EDT 2024
Fri Aug 23 03:42:16 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 28
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c296t-bebe044666af05d74cbdf218d4b897febf8630f3fd6afa858572956bb545bc353
ORCID 0000-0002-0185-0512
0000-0002-5758-2238
PQID 2071974194
PQPubID 2047521
PageCount 10
ParticipantIDs proquest_journals_2071974194
crossref_primary_10_1039_C8TC02130A
PublicationCentury 2000
PublicationDate 2018-00-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018-00-00
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. C, Materials for optical and electronic devices
PublicationYear 2018
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Frederikse (C8TC02130A-(cit40)/*[position()=1]) 1967; 161
Zhao (C8TC02130A-(cit7)/*[position()=1]) 2017; 549
Hong (C8TC02130A-(cit4)/*[position()=1]) 2017
Zhu (C8TC02130A-(cit11)/*[position()=1]) 2016; 2
Ohta (C8TC02130A-(cit18)/*[position()=1]) 2007; 6
Ohta (C8TC02130A-(cit30)/*[position()=1]) 2005; 87
He (C8TC02130A-(cit10)/*[position()=1]) 2015; 27
Wang (C8TC02130A-(cit27)/*[position()=1]) 2011; 94
Zhang (C8TC02130A-(cit29)/*[position()=1]) 2015; 3
Inagaki (C8TC02130A-(cit37)/*[position()=1]) 2003; 41
Fujimoto (C8TC02130A-(cit39)/*[position()=1]) 1985; 68
Cutler (C8TC02130A-(cit45)/*[position()=1]) 1964; 133
Shen (C8TC02130A-(cit42)/*[position()=1]) 2016; 4
Kovalevsky (C8TC02130A-(cit25)/*[position()=1]) 2014; 118
Kovalevsky (C8TC02130A-(cit28)/*[position()=1]) 2017; 5
Biswas (C8TC02130A-(cit1)/*[position()=1]) 2012; 489
Chen (C8TC02130A-(cit17)/*[position()=1]) 2017; 2
Popuri (C8TC02130A-(cit23)/*[position()=1]) 2014; 4
Liu (C8TC02130A-(cit46)/*[position()=1]) 2011; 1
Shannon (C8TC02130A-(cit34)/*[position()=1]) 1976; 32
Pierson (C8TC02130A-(cit32)/*[position()=1]) 1996
Wei (C8TC02130A-(cit6)/*[position()=1]) 2016; 138
Azough (C8TC02130A-(cit22)/*[position()=1]) 2017; 9
van Benthem (C8TC02130A-(cit31)/*[position()=1]) 2001; 90
Wang (C8TC02130A-(cit33)/*[position()=1]) 2010; 497
Hong (C8TC02130A-(cit3)/*[position()=1]) 2018; 30
Pei (C8TC02130A-(cit9)/*[position()=1]) 2012; 24
Wang (C8TC02130A-(cit13)/*[position()=1]) 2011; 50
Okuda (C8TC02130A-(cit15)/*[position()=1]) 2001; 63
Pei (C8TC02130A-(cit14)/*[position()=1]) 2016; 2
Tsumura (C8TC02130A-(cit36)/*[position()=1]) 2002; 12
Kwon (C8TC02130A-(cit38)/*[position()=1]) 2015; 98
Kovalevsky (C8TC02130A-(cit20)/*[position()=1]) 2014; 16
Tang (C8TC02130A-(cit12)/*[position()=1]) 2016; 138
Wu (C8TC02130A-(cit43)/*[position()=1]) 2015; 8
Poudel (C8TC02130A-(cit2)/*[position()=1]) 2008; 320
Ohta (C8TC02130A-(cit16)/*[position()=1]) 2005; 97
Lu (C8TC02130A-(cit24)/*[position()=1]) 2016; 28
Park (C8TC02130A-(cit21)/*[position()=1]) 2014; 2
Wang (C8TC02130A-(cit26)/*[position()=1]) 2017; 35
Wang (C8TC02130A-(cit19)/*[position()=1]) 2017; 35
Liu (C8TC02130A-(cit41)/*[position()=1]) 2013; 117
Zhao (C8TC02130A-(cit8)/*[position()=1]) 2016; 351
Blennow (C8TC02130A-(cit35)/*[position()=1]) 2006; 52
Wang (C8TC02130A-(cit44)/*[position()=1]) 2015; 27
Mao (C8TC02130A-(cit5)/*[position()=1]) 2017; 114
References_xml – volume: 28
  start-page: 925
  issue: 3
  year: 2016
  ident: C8TC02130A-(cit24)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b04616
  contributor:
    fullname: Lu
– volume: 30
  start-page: 1705942
  year: 2018
  ident: C8TC02130A-(cit3)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705942
  contributor:
    fullname: Hong
– volume: 161
  start-page: 822
  issue: 3
  year: 1967
  ident: C8TC02130A-(cit40)/*[position()=1]
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.161.822
  contributor:
    fullname: Frederikse
– volume: 27
  start-page: 1071
  issue: 3
  year: 2015
  ident: C8TC02130A-(cit44)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm504398d
  contributor:
    fullname: Wang
– volume: 6
  start-page: 129
  issue: 2
  year: 2007
  ident: C8TC02130A-(cit18)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1821
  contributor:
    fullname: Ohta
– volume: 138
  start-page: 8875
  issue: 28
  year: 2016
  ident: C8TC02130A-(cit6)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b04181
  contributor:
    fullname: Wei
– volume: 9
  start-page: 41988
  issue: 48
  year: 2017
  ident: C8TC02130A-(cit22)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b14231
  contributor:
    fullname: Azough
– volume: 489
  start-page: 414
  issue: 7416
  year: 2012
  ident: C8TC02130A-(cit1)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/Nature11439
  contributor:
    fullname: Biswas
– volume: 2
  start-page: 1600019
  issue: 6
  year: 2016
  ident: C8TC02130A-(cit14)/*[position()=1]
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201600019
  contributor:
    fullname: Pei
– volume: 2
  start-page: 915
  issue: 4
  year: 2017
  ident: C8TC02130A-(cit17)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00197
  contributor:
    fullname: Chen
– volume: 12
  start-page: 1391
  issue: 5
  year: 2002
  ident: C8TC02130A-(cit36)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/B201942F
  contributor:
    fullname: Tsumura
– volume: 27
  start-page: 3639
  issue: 24
  year: 2015
  ident: C8TC02130A-(cit10)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201501030
  contributor:
    fullname: He
– volume: 35
  start-page: 387
  year: 2017
  ident: C8TC02130A-(cit26)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.04.003
  contributor:
    fullname: Wang
– volume: 4
  start-page: 33720
  issue: 64
  year: 2014
  ident: C8TC02130A-(cit23)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/c4ra06871h
  contributor:
    fullname: Popuri
– volume: 32
  start-page: 751
  issue: 5
  year: 1976
  ident: C8TC02130A-(cit34)/*[position()=1]
  publication-title: Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.
  doi: 10.1107/S0567739476001551
  contributor:
    fullname: Shannon
– volume: 50
  start-page: 4412
  issue: 10
  year: 2011
  ident: C8TC02130A-(cit13)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic200178x
  contributor:
    fullname: Wang
– volume: 497
  start-page: 308
  issue: 1–2
  year: 2010
  ident: C8TC02130A-(cit33)/*[position()=1]
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2010.03.049
  contributor:
    fullname: Wang
– start-page: 1702333
  year: 2017
  ident: C8TC02130A-(cit4)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702333
  contributor:
    fullname: Hong
– volume: 94
  start-page: 838
  issue: 3
  year: 2011
  ident: C8TC02130A-(cit27)/*[position()=1]
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2010.04185.x
  contributor:
    fullname: Wang
– volume: 63
  start-page: 113104
  issue: 11
  year: 2001
  ident: C8TC02130A-(cit15)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.63.113104
  contributor:
    fullname: Okuda
– volume: 52
  start-page: 1651
  issue: 4
  year: 2006
  ident: C8TC02130A-(cit35)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2006.03.096
  contributor:
    fullname: Blennow
– volume: 68
  start-page: 169
  issue: 4
  year: 1985
  ident: C8TC02130A-(cit39)/*[position()=1]
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1985.tb15292.x
  contributor:
    fullname: Fujimoto
– volume: 2
  start-page: 1600171
  issue: 8
  year: 2016
  ident: C8TC02130A-(cit11)/*[position()=1]
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201600171
  contributor:
    fullname: Zhu
– volume: 133
  start-page: A1143
  issue: 4A
  year: 1964
  ident: C8TC02130A-(cit45)/*[position()=1]
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.133.A1143
  contributor:
    fullname: Cutler
– volume: 549
  start-page: 247
  year: 2017
  ident: C8TC02130A-(cit7)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature23667
  contributor:
    fullname: Zhao
– volume: 97
  issue: 3
  year: 2005
  ident: C8TC02130A-(cit16)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1847723
  contributor:
    fullname: Ohta
– volume-title: Handbook of Refractory Carbides and Nitrides
  year: 1996
  ident: C8TC02130A-(cit32)/*[position()=1]
  contributor:
    fullname: Pierson
– volume: 41
  start-page: 2619
  issue: 13
  year: 2003
  ident: C8TC02130A-(cit37)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/S0008-6223(03)00340-3
  contributor:
    fullname: Inagaki
– volume: 24
  start-page: 6125
  issue: 46
  year: 2012
  ident: C8TC02130A-(cit9)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201202919
  contributor:
    fullname: Pei
– volume: 138
  start-page: 13647
  year: 2016
  ident: C8TC02130A-(cit12)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b07010
  contributor:
    fullname: Tang
– volume: 118
  start-page: 4596
  issue: 9
  year: 2014
  ident: C8TC02130A-(cit25)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp409872e
  contributor:
    fullname: Kovalevsky
– volume: 87
  start-page: 092108
  issue: 9
  year: 2005
  ident: C8TC02130A-(cit30)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2035889
  contributor:
    fullname: Ohta
– volume: 1
  start-page: 577
  issue: 4
  year: 2011
  ident: C8TC02130A-(cit46)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201100149
  contributor:
    fullname: Liu
– volume: 114
  start-page: 10548
  issue: 40
  year: 2017
  ident: C8TC02130A-(cit5)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1711725114
  contributor:
    fullname: Mao
– volume: 4
  start-page: 15464
  issue: 40
  year: 2016
  ident: C8TC02130A-(cit42)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c6ta06033a
  contributor:
    fullname: Shen
– volume: 5
  start-page: 3909
  issue: 8
  year: 2017
  ident: C8TC02130A-(cit28)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c6ta09860f
  contributor:
    fullname: Kovalevsky
– volume: 117
  start-page: 11487
  issue: 22
  year: 2013
  ident: C8TC02130A-(cit41)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp401132g
  contributor:
    fullname: Liu
– volume: 3
  start-page: 11406
  issue: 43
  year: 2015
  ident: C8TC02130A-(cit29)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/c5tc02016f
  contributor:
    fullname: Zhang
– volume: 90
  start-page: 6156
  issue: 12
  year: 2001
  ident: C8TC02130A-(cit31)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1415766
  contributor:
    fullname: van Benthem
– volume: 351
  start-page: 141
  issue: 6269
  year: 2016
  ident: C8TC02130A-(cit8)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aad3749
  contributor:
    fullname: Zhao
– volume: 98
  start-page: 315
  issue: 1
  year: 2015
  ident: C8TC02130A-(cit38)/*[position()=1]
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.13276
  contributor:
    fullname: Kwon
– volume: 35
  start-page: 387
  year: 2017
  ident: C8TC02130A-(cit19)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.04.003
  contributor:
    fullname: Wang
– volume: 8
  start-page: 2056
  issue: 7
  year: 2015
  ident: C8TC02130A-(cit43)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c5ee01147g
  contributor:
    fullname: Wu
– volume: 320
  start-page: 634
  issue: 5876
  year: 2008
  ident: C8TC02130A-(cit2)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1156446
  contributor:
    fullname: Poudel
– volume: 16
  start-page: 26946
  issue: 48
  year: 2014
  ident: C8TC02130A-(cit20)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c4cp04127e
  contributor:
    fullname: Kovalevsky
– volume: 2
  start-page: 4217
  issue: 12
  year: 2014
  ident: C8TC02130A-(cit21)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C3TA14699E
  contributor:
    fullname: Park
SSID ssj0000816869
Score 2.4296532
Snippet Strontium titanate (SrTiO 3 ) is a promising n-type thermoelectric material at high temperature. However, to date, its reported high dimensional figure of...
Strontium titanate (SrTiO3) is a promising n-type thermoelectric material at high temperature. However, to date, its reported high dimensional figure of merit...
SourceID proquest
crossref
SourceType Aggregation Database
StartPage 7594
SubjectTerms Doping
Electron transport
Figure of merit
Niobium carbide
Point defects
Polycrystals
Power factor
Scattering
Sintering (powder metallurgy)
Strontium titanates
Temperature
Thermoelectric materials
Titanium dioxide
Transport properties
Title Broadening the temperature range for high thermoelectric performance of bulk polycrystalline strontium titanate by controlling the electronic transport properties
URI https://www.proquest.com/docview/2071974194
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZKJyQ4IBggBgNZglvlkcZxfhxHNTQm4NRJ41TVTjxN65KqTQ7lz-Hv44_gPcdx3JbD4BJVTuqkfl-fPzvvfY-QD1oJAIooWBGmOQOHl7NMpZzFEZDbcY4K5rg18O17fH4ZXVyJq8Hgtxe11NTyRP38a17J_1gV2sCumCX7D5Z1nUIDfAb7whEsDMd72RjW0HPwG13GE8pMWY3k0QqTBkwMIQoS4-nVXdXWvLlRKFbs0gWALcpmcYvlGjZqtQG2uDDUc42b5PVNczfCPLQSOClSVRvavuju6ZXRqTuddAz6WmK8to1P3Oe-QJPb8RmpruDcyWjS5g51Z_DZq2Xt1Ay8O-WF8W8umMhEJFwA0Nmnqn9DYGONm3L3uvKagRmvt5t_2L-J3QHx3XUYiIAlIrRi2n6b3SK1Pj72oGyT0VuHnYi2xrKd_JPYKC7sTywBR13WSTqdACnigZNm7dW7d2ZVF-to3vLzbNZ_9wE5CFGWcEgOTs-mX766PUFTBMVUYXQ_rFPU5dnHvoNtDrVNIQwvmj4lT6xR6WmLzmdkUJSH5LEnc3lIHpowY7V-Tn71iKWAHuohlhrEUrA6RcTSbcRSD7G00hQRS3cQSx1iaYdYKjfUQ6y5Z48j6hBLe8S-IJefz6aTc2arhDAVZnHNJLghE5UQz3Ug8iRSMtdAXPNIplmiC6nTmAea6xwumONrcFhPilhKWDtIxQV_SYZlVRavCA3yOYy5kuk40pEYcym11DwKlYq0hJX9EXnfjfts2YrBzPbNe0SOO5PMrLNYz0Kg8rB0H2fR63t18oY8Qqi3m33HZFivmuIt0N9avrOo-QPhSr0y
link.rule.ids 315,783,787,4033,27937,27938,27939
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Broadening+the+temperature+range+for+high+thermoelectric+performance+of+bulk+polycrystalline+strontium+titanate+by+controlling+the+electronic+transport+properties&rft.jtitle=Journal+of+materials+chemistry.+C%2C+Materials+for+optical+and+electronic+devices&rft.au=Li%2C+Jian-Bo&rft.au=Wang%2C+Jun&rft.au=Li%2C+Jing-Feng&rft.au=Li%2C+Yan&rft.date=2018&rft.issn=2050-7526&rft.eissn=2050-7534&rft.volume=6&rft.issue=28&rft.spage=7594&rft.epage=7603&rft_id=info:doi/10.1039%2FC8TC02130A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C8TC02130A
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7526&client=summon