Broadening the temperature range for high thermoelectric performance of bulk polycrystalline strontium titanate by controlling the electronic transport properties
Strontium titanate (SrTiO 3 ) is a promising n-type thermoelectric material at high temperature. However, to date, its reported high dimensional figure of merit ( zT ) > 0.4 has only been achieved in a narrow temperature range near 1000 K. In this study, zT values of >0.4 were achieved in the...
Saved in:
Published in | Journal of materials chemistry. C, Materials for optical and electronic devices Vol. 6; no. 28; pp. 7594 - 7603 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Strontium titanate (SrTiO
3
) is a promising n-type thermoelectric material at high temperature. However, to date, its reported high dimensional figure of merit (
zT
) > 0.4 has only been achieved in a narrow temperature range near 1000 K. In this study,
zT
values of >0.4 were achieved in the broad temperature range of 769–1009 K in bulk SrTiO
3
co-doped with La and Nb with
in situ
precipitation of second phases of NbC and TiO
2−δ
. The electronic transport properties of the samples were optimized by adjusting the doping ratio, resulting in a large power factor of 1.82 mW m
−1
K
−2
at 622 K for 7 mol% La–7 mol% Nb-doped SrTiO
3
. Notably, the power factor (PF) decreased more gradually with increasing temperature, resulting in a high PF of 1.28 mW m
−1
K
−2
even at 1009 K. In addition, precipitation of the second phases occurred during sintering of the mixture of La–Nb doped SrTiO
3
nano powder and carbon powder, which provided additional phonon scattering centers except for the phonon scattering centers of La and Nb point defects. This high thermoelectric performance achieved over a broad temperature range could be beneficial for broadening the range of application temperatures for bulk polycrystalline SrTiO
3
. Furthermore, the tailoring strategy of co-doping, an
in situ
second phase, and oxygen vacancies applied in this study may be applicable to other oxide thermoelectric materials. |
---|---|
AbstractList | Strontium titanate (SrTiO3) is a promising n-type thermoelectric material at high temperature. However, to date, its reported high dimensional figure of merit (zT) > 0.4 has only been achieved in a narrow temperature range near 1000 K. In this study, zT values of >0.4 were achieved in the broad temperature range of 769–1009 K in bulk SrTiO3 co-doped with La and Nb with in situ precipitation of second phases of NbC and TiO2−δ. The electronic transport properties of the samples were optimized by adjusting the doping ratio, resulting in a large power factor of 1.82 mW m−1 K−2 at 622 K for 7 mol% La–7 mol% Nb-doped SrTiO3. Notably, the power factor (PF) decreased more gradually with increasing temperature, resulting in a high PF of 1.28 mW m−1 K−2 even at 1009 K. In addition, precipitation of the second phases occurred during sintering of the mixture of La–Nb doped SrTiO3 nano powder and carbon powder, which provided additional phonon scattering centers except for the phonon scattering centers of La and Nb point defects. This high thermoelectric performance achieved over a broad temperature range could be beneficial for broadening the range of application temperatures for bulk polycrystalline SrTiO3. Furthermore, the tailoring strategy of co-doping, an in situ second phase, and oxygen vacancies applied in this study may be applicable to other oxide thermoelectric materials. Strontium titanate (SrTiO 3 ) is a promising n-type thermoelectric material at high temperature. However, to date, its reported high dimensional figure of merit ( zT ) > 0.4 has only been achieved in a narrow temperature range near 1000 K. In this study, zT values of >0.4 were achieved in the broad temperature range of 769–1009 K in bulk SrTiO 3 co-doped with La and Nb with in situ precipitation of second phases of NbC and TiO 2−δ . The electronic transport properties of the samples were optimized by adjusting the doping ratio, resulting in a large power factor of 1.82 mW m −1 K −2 at 622 K for 7 mol% La–7 mol% Nb-doped SrTiO 3 . Notably, the power factor (PF) decreased more gradually with increasing temperature, resulting in a high PF of 1.28 mW m −1 K −2 even at 1009 K. In addition, precipitation of the second phases occurred during sintering of the mixture of La–Nb doped SrTiO 3 nano powder and carbon powder, which provided additional phonon scattering centers except for the phonon scattering centers of La and Nb point defects. This high thermoelectric performance achieved over a broad temperature range could be beneficial for broadening the range of application temperatures for bulk polycrystalline SrTiO 3 . Furthermore, the tailoring strategy of co-doping, an in situ second phase, and oxygen vacancies applied in this study may be applicable to other oxide thermoelectric materials. |
Author | Miao, Lei Yaer, Xinba Ma, Xiao-Bo Li, Jing-Feng Li, Yan Liu, Liang Yang, He Wang, Jun Yu, Hao-Yang Li, Jian-Bo |
Author_xml | – sequence: 1 givenname: Jian-Bo surname: Li fullname: Li, Jian-Bo organization: School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot, China – sequence: 2 givenname: Jun orcidid: 0000-0002-5758-2238 surname: Wang fullname: Wang, Jun organization: School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot, China – sequence: 3 givenname: Jing-Feng orcidid: 0000-0002-0185-0512 surname: Li fullname: Li, Jing-Feng organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China – sequence: 4 givenname: Yan surname: Li fullname: Li, Yan organization: School of Chemical Engineering, Kang Ba Shi Qu, Ordos, Ordos Institute of Technology, Ordos, China – sequence: 5 givenname: He surname: Yang fullname: Yang, He organization: School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot, China – sequence: 6 givenname: Hao-Yang surname: Yu fullname: Yu, Hao-Yang organization: School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot, China – sequence: 7 givenname: Xiao-Bo surname: Ma fullname: Ma, Xiao-Bo organization: School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot, China – sequence: 8 givenname: Xinba surname: Yaer fullname: Yaer, Xinba organization: School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot, China – sequence: 9 givenname: Liang surname: Liu fullname: Liu, Liang organization: School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot, China – sequence: 10 givenname: Lei surname: Miao fullname: Miao, Lei organization: Guangxi Key Laboratory of Information Material, Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin |
BookMark | eNpFkctOwzAQRS0EEqV0wxdYYodUcB52kmWpeEmV2JR1ZDvjNiWxw9hZ5Hf4UlwVwWxmNHN0z2KuyLl1Fgi5Sdh9wrLqYV1u1yxNMrY6I7OUcbYseJaf_82puCQL7w8sVpmIUlQz8v2ITjZgW7ujYQ80QD8AyjAiUJR2B9Q4pPt2tz-esXfQgQ7YahqxeOql1UCdoWrsPunguknj5IPsutYC9QGdDe3Y09AGaWUAqiaq4w7dkTg5T5HOxtAQnX5wGOiALhpCC_6aXBjZeVj89jn5eH7arl-Xm_eXt_Vqs9RpJcJSgQKW50IIaRhvilyrxqRJ2eSqrAoDypQiYyYzTQRkyUtepBUXSvGcK53xbE5uT7lR_TWCD_XBjWijsk5ZkVRFnlR5pO5OlEbnPYKpB2x7iVOdsPr4hvr_DdkPAq6BvQ |
CitedBy_id | crossref_primary_10_1016_j_cej_2021_130668 crossref_primary_10_1021_acsaem_3c01111 crossref_primary_10_1016_j_mtchem_2020_100384 crossref_primary_10_1002_adfm_202213144 crossref_primary_10_1016_j_jeurceramsoc_2023_10_028 crossref_primary_10_1016_j_ceramint_2024_06_103 crossref_primary_10_1016_j_jallcom_2020_154958 crossref_primary_10_1016_j_vacuum_2023_112196 crossref_primary_10_1016_j_solidstatesciences_2021_106774 crossref_primary_10_1016_j_jeurceramsoc_2022_02_053 crossref_primary_10_1021_acssuschemeng_0c03849 crossref_primary_10_3390_ma15020487 crossref_primary_10_1002_cplu_202000113 crossref_primary_10_1016_j_jeurceramsoc_2019_09_024 crossref_primary_10_1039_D2MH01332K crossref_primary_10_1142_S1793604722510547 crossref_primary_10_1016_j_heliyon_2024_e29121 crossref_primary_10_1016_j_jallcom_2021_162858 crossref_primary_10_1002_advs_202307058 crossref_primary_10_1016_j_physe_2022_115292 crossref_primary_10_1039_D2TA06576B crossref_primary_10_1039_C9TA13824B crossref_primary_10_1016_j_cej_2024_151895 crossref_primary_10_1039_D2MA00404F crossref_primary_10_1016_j_jmat_2022_02_002 crossref_primary_10_1016_j_cej_2021_131121 crossref_primary_10_1016_j_jeurceramsoc_2024_02_022 crossref_primary_10_1088_1674_1056_abe9a9 crossref_primary_10_1016_j_materresbull_2019_110650 crossref_primary_10_1021_acsami_9b07313 crossref_primary_10_1021_acsami_9b20090 crossref_primary_10_15541_jim20230288 crossref_primary_10_1142_S1793604720510017 crossref_primary_10_1016_j_catcom_2022_106436 crossref_primary_10_1016_j_nanoen_2020_105195 crossref_primary_10_1016_j_actamat_2022_117785 crossref_primary_10_1021_acsami_0c16084 crossref_primary_10_1016_j_ceramint_2023_03_031 crossref_primary_10_1002_tcr_202200195 crossref_primary_10_15541_jim20210631 crossref_primary_10_1016_j_jallcom_2020_158552 crossref_primary_10_1016_j_jallcom_2024_174242 |
Cites_doi | 10.1021/acs.chemmater.5b04616 10.1002/adma.201705942 10.1103/PhysRev.161.822 10.1021/cm504398d 10.1038/nmat1821 10.1021/jacs.6b04181 10.1021/acsami.7b14231 10.1038/Nature11439 10.1002/aelm.201600019 10.1021/acsenergylett.7b00197 10.1039/B201942F 10.1002/adma.201501030 10.1016/j.nanoen.2017.04.003 10.1039/c4ra06871h 10.1107/S0567739476001551 10.1021/ic200178x 10.1016/j.jallcom.2010.03.049 10.1002/aenm.201702333 10.1111/j.1551-2916.2010.04185.x 10.1103/PhysRevB.63.113104 10.1016/j.electacta.2006.03.096 10.1111/j.1151-2916.1985.tb15292.x 10.1002/aelm.201600171 10.1103/PhysRev.133.A1143 10.1038/nature23667 10.1063/1.1847723 10.1016/S0008-6223(03)00340-3 10.1002/adma.201202919 10.1021/jacs.6b07010 10.1021/jp409872e 10.1063/1.2035889 10.1002/aenm.201100149 10.1073/pnas.1711725114 10.1039/c6ta06033a 10.1039/c6ta09860f 10.1021/jp401132g 10.1039/c5tc02016f 10.1063/1.1415766 10.1126/science.aad3749 10.1111/jace.13276 10.1039/c5ee01147g 10.1126/science.1156446 10.1039/c4cp04127e 10.1039/C3TA14699E |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2018 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2018 |
DBID | AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1039/C8TC02130A |
DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 2050-7534 |
EndPage | 7603 |
ExternalDocumentID | 10_1039_C8TC02130A |
GroupedDBID | -JG 0-7 0R~ 4.4 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANBJS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K CITATION EBS ECGLT EE0 EF- EJD GGIMP GNO H13 HZ~ H~N J3G J3H J3I O-G O9- R7C RAOCF RCNCU RNS ROL RPMJG RRC RSCEA SKA SKF SLH UCJ 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c296t-bebe044666af05d74cbdf218d4b897febf8630f3fd6afa858572956bb545bc353 |
ISSN | 2050-7526 |
IngestDate | Thu Oct 10 15:52:51 EDT 2024 Fri Aug 23 03:42:16 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 28 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c296t-bebe044666af05d74cbdf218d4b897febf8630f3fd6afa858572956bb545bc353 |
ORCID | 0000-0002-0185-0512 0000-0002-5758-2238 |
PQID | 2071974194 |
PQPubID | 2047521 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2071974194 crossref_primary_10_1039_C8TC02130A |
PublicationCentury | 2000 |
PublicationDate | 2018-00-00 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – year: 2018 text: 2018-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. C, Materials for optical and electronic devices |
PublicationYear | 2018 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Frederikse (C8TC02130A-(cit40)/*[position()=1]) 1967; 161 Zhao (C8TC02130A-(cit7)/*[position()=1]) 2017; 549 Hong (C8TC02130A-(cit4)/*[position()=1]) 2017 Zhu (C8TC02130A-(cit11)/*[position()=1]) 2016; 2 Ohta (C8TC02130A-(cit18)/*[position()=1]) 2007; 6 Ohta (C8TC02130A-(cit30)/*[position()=1]) 2005; 87 He (C8TC02130A-(cit10)/*[position()=1]) 2015; 27 Wang (C8TC02130A-(cit27)/*[position()=1]) 2011; 94 Zhang (C8TC02130A-(cit29)/*[position()=1]) 2015; 3 Inagaki (C8TC02130A-(cit37)/*[position()=1]) 2003; 41 Fujimoto (C8TC02130A-(cit39)/*[position()=1]) 1985; 68 Cutler (C8TC02130A-(cit45)/*[position()=1]) 1964; 133 Shen (C8TC02130A-(cit42)/*[position()=1]) 2016; 4 Kovalevsky (C8TC02130A-(cit25)/*[position()=1]) 2014; 118 Kovalevsky (C8TC02130A-(cit28)/*[position()=1]) 2017; 5 Biswas (C8TC02130A-(cit1)/*[position()=1]) 2012; 489 Chen (C8TC02130A-(cit17)/*[position()=1]) 2017; 2 Popuri (C8TC02130A-(cit23)/*[position()=1]) 2014; 4 Liu (C8TC02130A-(cit46)/*[position()=1]) 2011; 1 Shannon (C8TC02130A-(cit34)/*[position()=1]) 1976; 32 Pierson (C8TC02130A-(cit32)/*[position()=1]) 1996 Wei (C8TC02130A-(cit6)/*[position()=1]) 2016; 138 Azough (C8TC02130A-(cit22)/*[position()=1]) 2017; 9 van Benthem (C8TC02130A-(cit31)/*[position()=1]) 2001; 90 Wang (C8TC02130A-(cit33)/*[position()=1]) 2010; 497 Hong (C8TC02130A-(cit3)/*[position()=1]) 2018; 30 Pei (C8TC02130A-(cit9)/*[position()=1]) 2012; 24 Wang (C8TC02130A-(cit13)/*[position()=1]) 2011; 50 Okuda (C8TC02130A-(cit15)/*[position()=1]) 2001; 63 Pei (C8TC02130A-(cit14)/*[position()=1]) 2016; 2 Tsumura (C8TC02130A-(cit36)/*[position()=1]) 2002; 12 Kwon (C8TC02130A-(cit38)/*[position()=1]) 2015; 98 Kovalevsky (C8TC02130A-(cit20)/*[position()=1]) 2014; 16 Tang (C8TC02130A-(cit12)/*[position()=1]) 2016; 138 Wu (C8TC02130A-(cit43)/*[position()=1]) 2015; 8 Poudel (C8TC02130A-(cit2)/*[position()=1]) 2008; 320 Ohta (C8TC02130A-(cit16)/*[position()=1]) 2005; 97 Lu (C8TC02130A-(cit24)/*[position()=1]) 2016; 28 Park (C8TC02130A-(cit21)/*[position()=1]) 2014; 2 Wang (C8TC02130A-(cit26)/*[position()=1]) 2017; 35 Wang (C8TC02130A-(cit19)/*[position()=1]) 2017; 35 Liu (C8TC02130A-(cit41)/*[position()=1]) 2013; 117 Zhao (C8TC02130A-(cit8)/*[position()=1]) 2016; 351 Blennow (C8TC02130A-(cit35)/*[position()=1]) 2006; 52 Wang (C8TC02130A-(cit44)/*[position()=1]) 2015; 27 Mao (C8TC02130A-(cit5)/*[position()=1]) 2017; 114 |
References_xml | – volume: 28 start-page: 925 issue: 3 year: 2016 ident: C8TC02130A-(cit24)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b04616 contributor: fullname: Lu – volume: 30 start-page: 1705942 year: 2018 ident: C8TC02130A-(cit3)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201705942 contributor: fullname: Hong – volume: 161 start-page: 822 issue: 3 year: 1967 ident: C8TC02130A-(cit40)/*[position()=1] publication-title: Phys. Rev. doi: 10.1103/PhysRev.161.822 contributor: fullname: Frederikse – volume: 27 start-page: 1071 issue: 3 year: 2015 ident: C8TC02130A-(cit44)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm504398d contributor: fullname: Wang – volume: 6 start-page: 129 issue: 2 year: 2007 ident: C8TC02130A-(cit18)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat1821 contributor: fullname: Ohta – volume: 138 start-page: 8875 issue: 28 year: 2016 ident: C8TC02130A-(cit6)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b04181 contributor: fullname: Wei – volume: 9 start-page: 41988 issue: 48 year: 2017 ident: C8TC02130A-(cit22)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b14231 contributor: fullname: Azough – volume: 489 start-page: 414 issue: 7416 year: 2012 ident: C8TC02130A-(cit1)/*[position()=1] publication-title: Nature doi: 10.1038/Nature11439 contributor: fullname: Biswas – volume: 2 start-page: 1600019 issue: 6 year: 2016 ident: C8TC02130A-(cit14)/*[position()=1] publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201600019 contributor: fullname: Pei – volume: 2 start-page: 915 issue: 4 year: 2017 ident: C8TC02130A-(cit17)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00197 contributor: fullname: Chen – volume: 12 start-page: 1391 issue: 5 year: 2002 ident: C8TC02130A-(cit36)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/B201942F contributor: fullname: Tsumura – volume: 27 start-page: 3639 issue: 24 year: 2015 ident: C8TC02130A-(cit10)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201501030 contributor: fullname: He – volume: 35 start-page: 387 year: 2017 ident: C8TC02130A-(cit26)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.04.003 contributor: fullname: Wang – volume: 4 start-page: 33720 issue: 64 year: 2014 ident: C8TC02130A-(cit23)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/c4ra06871h contributor: fullname: Popuri – volume: 32 start-page: 751 issue: 5 year: 1976 ident: C8TC02130A-(cit34)/*[position()=1] publication-title: Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. doi: 10.1107/S0567739476001551 contributor: fullname: Shannon – volume: 50 start-page: 4412 issue: 10 year: 2011 ident: C8TC02130A-(cit13)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic200178x contributor: fullname: Wang – volume: 497 start-page: 308 issue: 1–2 year: 2010 ident: C8TC02130A-(cit33)/*[position()=1] publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2010.03.049 contributor: fullname: Wang – start-page: 1702333 year: 2017 ident: C8TC02130A-(cit4)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702333 contributor: fullname: Hong – volume: 94 start-page: 838 issue: 3 year: 2011 ident: C8TC02130A-(cit27)/*[position()=1] publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2010.04185.x contributor: fullname: Wang – volume: 63 start-page: 113104 issue: 11 year: 2001 ident: C8TC02130A-(cit15)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.63.113104 contributor: fullname: Okuda – volume: 52 start-page: 1651 issue: 4 year: 2006 ident: C8TC02130A-(cit35)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2006.03.096 contributor: fullname: Blennow – volume: 68 start-page: 169 issue: 4 year: 1985 ident: C8TC02130A-(cit39)/*[position()=1] publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1985.tb15292.x contributor: fullname: Fujimoto – volume: 2 start-page: 1600171 issue: 8 year: 2016 ident: C8TC02130A-(cit11)/*[position()=1] publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201600171 contributor: fullname: Zhu – volume: 133 start-page: A1143 issue: 4A year: 1964 ident: C8TC02130A-(cit45)/*[position()=1] publication-title: Phys. Rev. doi: 10.1103/PhysRev.133.A1143 contributor: fullname: Cutler – volume: 549 start-page: 247 year: 2017 ident: C8TC02130A-(cit7)/*[position()=1] publication-title: Nature doi: 10.1038/nature23667 contributor: fullname: Zhao – volume: 97 issue: 3 year: 2005 ident: C8TC02130A-(cit16)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.1847723 contributor: fullname: Ohta – volume-title: Handbook of Refractory Carbides and Nitrides year: 1996 ident: C8TC02130A-(cit32)/*[position()=1] contributor: fullname: Pierson – volume: 41 start-page: 2619 issue: 13 year: 2003 ident: C8TC02130A-(cit37)/*[position()=1] publication-title: Carbon doi: 10.1016/S0008-6223(03)00340-3 contributor: fullname: Inagaki – volume: 24 start-page: 6125 issue: 46 year: 2012 ident: C8TC02130A-(cit9)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201202919 contributor: fullname: Pei – volume: 138 start-page: 13647 year: 2016 ident: C8TC02130A-(cit12)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b07010 contributor: fullname: Tang – volume: 118 start-page: 4596 issue: 9 year: 2014 ident: C8TC02130A-(cit25)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp409872e contributor: fullname: Kovalevsky – volume: 87 start-page: 092108 issue: 9 year: 2005 ident: C8TC02130A-(cit30)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.2035889 contributor: fullname: Ohta – volume: 1 start-page: 577 issue: 4 year: 2011 ident: C8TC02130A-(cit46)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201100149 contributor: fullname: Liu – volume: 114 start-page: 10548 issue: 40 year: 2017 ident: C8TC02130A-(cit5)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1711725114 contributor: fullname: Mao – volume: 4 start-page: 15464 issue: 40 year: 2016 ident: C8TC02130A-(cit42)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/c6ta06033a contributor: fullname: Shen – volume: 5 start-page: 3909 issue: 8 year: 2017 ident: C8TC02130A-(cit28)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/c6ta09860f contributor: fullname: Kovalevsky – volume: 117 start-page: 11487 issue: 22 year: 2013 ident: C8TC02130A-(cit41)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp401132g contributor: fullname: Liu – volume: 3 start-page: 11406 issue: 43 year: 2015 ident: C8TC02130A-(cit29)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/c5tc02016f contributor: fullname: Zhang – volume: 90 start-page: 6156 issue: 12 year: 2001 ident: C8TC02130A-(cit31)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.1415766 contributor: fullname: van Benthem – volume: 351 start-page: 141 issue: 6269 year: 2016 ident: C8TC02130A-(cit8)/*[position()=1] publication-title: Science doi: 10.1126/science.aad3749 contributor: fullname: Zhao – volume: 98 start-page: 315 issue: 1 year: 2015 ident: C8TC02130A-(cit38)/*[position()=1] publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.13276 contributor: fullname: Kwon – volume: 35 start-page: 387 year: 2017 ident: C8TC02130A-(cit19)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.04.003 contributor: fullname: Wang – volume: 8 start-page: 2056 issue: 7 year: 2015 ident: C8TC02130A-(cit43)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c5ee01147g contributor: fullname: Wu – volume: 320 start-page: 634 issue: 5876 year: 2008 ident: C8TC02130A-(cit2)/*[position()=1] publication-title: Science doi: 10.1126/science.1156446 contributor: fullname: Poudel – volume: 16 start-page: 26946 issue: 48 year: 2014 ident: C8TC02130A-(cit20)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c4cp04127e contributor: fullname: Kovalevsky – volume: 2 start-page: 4217 issue: 12 year: 2014 ident: C8TC02130A-(cit21)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C3TA14699E contributor: fullname: Park |
SSID | ssj0000816869 |
Score | 2.4296532 |
Snippet | Strontium titanate (SrTiO
3
) is a promising n-type thermoelectric material at high temperature. However, to date, its reported high dimensional figure of... Strontium titanate (SrTiO3) is a promising n-type thermoelectric material at high temperature. However, to date, its reported high dimensional figure of merit... |
SourceID | proquest crossref |
SourceType | Aggregation Database |
StartPage | 7594 |
SubjectTerms | Doping Electron transport Figure of merit Niobium carbide Point defects Polycrystals Power factor Scattering Sintering (powder metallurgy) Strontium titanates Temperature Thermoelectric materials Titanium dioxide Transport properties |
Title | Broadening the temperature range for high thermoelectric performance of bulk polycrystalline strontium titanate by controlling the electronic transport properties |
URI | https://www.proquest.com/docview/2071974194 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZKJyQ4IBggBgNZglvlkcZxfhxHNTQm4NRJ41TVTjxN65KqTQ7lz-Hv44_gPcdx3JbD4BJVTuqkfl-fPzvvfY-QD1oJAIooWBGmOQOHl7NMpZzFEZDbcY4K5rg18O17fH4ZXVyJq8Hgtxe11NTyRP38a17J_1gV2sCumCX7D5Z1nUIDfAb7whEsDMd72RjW0HPwG13GE8pMWY3k0QqTBkwMIQoS4-nVXdXWvLlRKFbs0gWALcpmcYvlGjZqtQG2uDDUc42b5PVNczfCPLQSOClSVRvavuju6ZXRqTuddAz6WmK8to1P3Oe-QJPb8RmpruDcyWjS5g51Z_DZq2Xt1Ay8O-WF8W8umMhEJFwA0Nmnqn9DYGONm3L3uvKagRmvt5t_2L-J3QHx3XUYiIAlIrRi2n6b3SK1Pj72oGyT0VuHnYi2xrKd_JPYKC7sTywBR13WSTqdACnigZNm7dW7d2ZVF-to3vLzbNZ_9wE5CFGWcEgOTs-mX766PUFTBMVUYXQ_rFPU5dnHvoNtDrVNIQwvmj4lT6xR6WmLzmdkUJSH5LEnc3lIHpowY7V-Tn71iKWAHuohlhrEUrA6RcTSbcRSD7G00hQRS3cQSx1iaYdYKjfUQ6y5Z48j6hBLe8S-IJefz6aTc2arhDAVZnHNJLghE5UQz3Ug8iRSMtdAXPNIplmiC6nTmAea6xwumONrcFhPilhKWDtIxQV_SYZlVRavCA3yOYy5kuk40pEYcym11DwKlYq0hJX9EXnfjfts2YrBzPbNe0SOO5PMrLNYz0Kg8rB0H2fR63t18oY8Qqi3m33HZFivmuIt0N9avrOo-QPhSr0y |
link.rule.ids | 315,783,787,4033,27937,27938,27939 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Broadening+the+temperature+range+for+high+thermoelectric+performance+of+bulk+polycrystalline+strontium+titanate+by+controlling+the+electronic+transport+properties&rft.jtitle=Journal+of+materials+chemistry.+C%2C+Materials+for+optical+and+electronic+devices&rft.au=Li%2C+Jian-Bo&rft.au=Wang%2C+Jun&rft.au=Li%2C+Jing-Feng&rft.au=Li%2C+Yan&rft.date=2018&rft.issn=2050-7526&rft.eissn=2050-7534&rft.volume=6&rft.issue=28&rft.spage=7594&rft.epage=7603&rft_id=info:doi/10.1039%2FC8TC02130A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C8TC02130A |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7526&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7526&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7526&client=summon |