Electromagnetic-Thermal Analysis With FDTD and Physics-Informed Neural Networks
This paper presents the coupling of the finite-difference time-domain (FDTD) method for electromagnetic field simulation, with a physics-informed neural network based solver for the heat equation. To this end, we employ a physics-informed U-Net instead of a numerical method to solve the heat equatio...
Saved in:
Published in | IEEE journal on multiscale and multiphysics computational techniques Vol. 8; pp. 1 - 11 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper presents the coupling of the finite-difference time-domain (FDTD) method for electromagnetic field simulation, with a physics-informed neural network based solver for the heat equation. To this end, we employ a physics-informed U-Net instead of a numerical method to solve the heat equation. This approach enables the solution of general multiphysics problems with a single-physics numerical solver coupled with a neural network, overcoming the questions of accuracy and efficiency that are associated with interfacing multiphysics equations. By embedding the heat equation and its boundary conditions in the U-Net, we implement an unsupervised training methodology, which does not require the generation of ground-truth data. We test the proposed method with general 2-D coupled electromagnetic-thermal problems, demonstrating its accuracy and efficiency compared to standard finite-difference based alternatives. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2379-8815 2379-8815 |
DOI: | 10.1109/JMMCT.2023.3236946 |