Sum-rate Maximization for RIS-assisted Integrated Sensing and Communication Systems with Manifold Optimization
Integrated sensing and communication (ISAC) is a key enabler for next-generation wireless communication systems to improve spectral efficiency. However, the coexistence of sensing and communication functionalities can cause harmful interference. In this paper, we propose to use a reconfigurable inte...
Saved in:
Published in | IEEE transactions on communications Vol. 71; no. 8; p. 1 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Integrated sensing and communication (ISAC) is a key enabler for next-generation wireless communication systems to improve spectral efficiency. However, the coexistence of sensing and communication functionalities can cause harmful interference. In this paper, we propose to use a reconfigurable intelligent surface (RIS) in conjunction with ISAC to address this issue. The RIS is composed of a large number of low-cost elements that can adjust the amplitude and phase shift of impinging signals, thus providing a relatively high beamforming gain. To maximize the sum-rate of the communication system, we jointly optimize the beamformer at the base station (BS) and the phase shifts at the RIS, subject to a threshold on the interference power, the unit-norm constraint of the transmit power, and the unit modulus constraint of the RIS phase shifts. To efficiently tackle this NP-hard problem, we first reformulate the problem into a more tractable form using the fractional programming (FP) technique. Then, we exploit the geometrical properties of the constraints and adopt an alternating manifold-based optimization to compute the optimal active beamformer and the RIS phase shifts, respectively. Simulation results demonstrate that the proposed RIS-assisted design significantly reduces the mutual interference and improves the system sum-rate for the communication system. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0090-6778 1558-0857 |
DOI: | 10.1109/TCOMM.2023.3277872 |