Wearable Electrochemical Sensors for Healthcare Monitoring: A Review of Current Developments and Future Prospects

Wearable devices and biosensors have gained significant attention due to their high potential to continuously monitor the biomarkers in human body biofluids through non-invasive and minimally invasive methods and give feedback to the users in real-time. Numerous developments have been made in the el...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on molecular, biological, and multi-scale communications Vol. 9; no. 3; p. 1
Main Authors Mirlou, Fariborz, Beker, Levent
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.09.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Wearable devices and biosensors have gained significant attention due to their high potential to continuously monitor the biomarkers in human body biofluids through non-invasive and minimally invasive methods and give feedback to the users in real-time. Numerous developments have been made in the electrochemical devices field for the non-invasive measurements of the desired biomarkers, including detecting different electrolytes, metabolites, and hormones. Integrating multiplexed human health monitoring, using biosensors, and transmitting the acquired data using wireless systems has been achieved and miniaturized. These systems have been combined with flexible materials to enhance their conformability and easy use. Such precise monitoring of the target biomarker and physiological data through wearable devices would significantly improve life quality by providing critical health-related information in real time. On the other hand, there needs to be an in-depth understanding of analyte concentrations in blood and their correlation to other biofluids, which will help improve the biosensors' reliability. Thus, conducting large-scale in-vivo studies on different subjects using wearable biosensors and clinical equipment is an essential validation factor for the biosensors. Here, we focus on wearable electrochemical devices that can non-invasively measure and track the human body's vital health information and transmit it to the users' mobile devices.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2372-2061
2372-2061
DOI:10.1109/TMBMC.2023.3304240