Decoupling Multimodal Transformers for Referring Video Object Segmentation

Referring Video Object Segmentation (RVOS) aims to segment the text-depicted object from video sequences. With excellent capabilities in long-range modelling and information interaction, transformers have been increasingly applied in existing RVOS architectures. To better leverage multimodal data, m...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 33; no. 9; p. 1
Main Authors Gao, Mingqi, Yang, Jinyu, Han, Jungong, Lu, Ke, Zheng, Feng, Montana, Giovanni
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Referring Video Object Segmentation (RVOS) aims to segment the text-depicted object from video sequences. With excellent capabilities in long-range modelling and information interaction, transformers have been increasingly applied in existing RVOS architectures. To better leverage multimodal data, most efforts focus on the interaction between visual and textual features. However, they ignore the syntactic structures of the text during the interaction, where all textual components are intertwined, resulting in ambiguous vision-language alignment. In this paper, we improve the multimodal interaction by DECOUPLING the interweave. Specifically, we train a lightweight subject perceptron, which extracts the subject part from the input text. Then, the subject and text features are fed into two parallel branches to interact with visual features. This enables us to perform subject-aware and context-aware interactions, respectively, thus encouraging more explicit and discriminative feature embedding and alignment. Moreover, we find the decoupled architecture also facilitates incorporating the vision-language pre-trained alignment into RVOS, further improving the segmentation performance. Experimental results on all RVOS benchmark datasets demonstrate the superiority of our proposed method over the state-of-the-arts. The code of our method is available at: https://github.com/gaomingqi/dmformer.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1051-8215
1558-2205
DOI:10.1109/TCSVT.2023.3284979