MuseMorphose: Full-Song and Fine-Grained Piano Music Style Transfer With One Transformer VAE

Transformers and variational autoencoders (VAE) have been extensively employed for symbolic (e.g., MIDI) domain music generation. While the former boast an impressive capability in modeling long sequences, the latter allow users to willingly exert control over different parts (e.g., bars) of the mus...

Full description

Saved in:
Bibliographic Details
Published inIEEE/ACM transactions on audio, speech, and language processing Vol. 31; pp. 1953 - 1967
Main Authors Wu, Shih-Lun, Yang, Yi-Hsuan
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Transformers and variational autoencoders (VAE) have been extensively employed for symbolic (e.g., MIDI) domain music generation. While the former boast an impressive capability in modeling long sequences, the latter allow users to willingly exert control over different parts (e.g., bars) of the music to be generated. In this paper, we are interested in bringing the two together to construct a single model that exhibits both strengths. The task is split into two steps. First, we equip Transformer decoders with the ability to accept segment-level, time-varying conditions during sequence generation. Subsequently, we combine the developed and tested in-attention decoder with a Transformer encoder, and train the resulting MuseMorphose model with the VAE objective to achieve style transfer of long pop piano pieces, in which users can specify musical attributes including rhythmic intensity and polyphony (i.e., harmonic fullness) they desire, down to the bar level. Experiments show that MuseMorphose outperforms recurrent neural network (RNN) based baselines on numerous widely-used metrics for style transfer tasks.
ISSN:2329-9290
2329-9304
DOI:10.1109/TASLP.2023.3270726