Go Closer To See Better: Camouflaged Object Detection via Object Area Amplification and Figure-ground Conversion

Camouflaged Object Detection (COD) aims to detect objects well hidden in the environment. The main challenges of COD come from the high degree of texture and color overlapping between the objects and their surroundings. Inspired by that humans tend to go closer to the object and magnify it to recogn...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 33; no. 10; p. 1
Main Authors Xing, Haozhe, Wang, Yan, Wei, Xujun, Tang, Hao, Gao, Shuyong, Zhang, Wenqiang
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Camouflaged Object Detection (COD) aims to detect objects well hidden in the environment. The main challenges of COD come from the high degree of texture and color overlapping between the objects and their surroundings. Inspired by that humans tend to go closer to the object and magnify it to recognize ambiguous objects more clearly, we propose a novel three-stage architecture called Search-Amplify-Recognize and design a network SARNet to address the challenges. Specifically, In the Search part, we utilize an attention-based backbone to locate the object. In the Amplify part, to obtain rich searched features and fine segmentation, we design Object Area Amplification modules (OAA) to perform cross-level and adjacent-level feature fusion and amplifying operations on feature maps. Besides, the OAA can be regarded as a simple and effective plug-in module to integrate and amplify the feature maps. The main components of the Recognize part are the Figure-Ground Conversion modules (FGC). The FGC modules alternately pay attention to the foreground and background to precisely separate the highly similar foreground and background. Extensive experiments on benchmark datasets show that our model outperforms other SOTA methods not only on COD tasks but also in COD downstream tasks, such as polyp segmentation and video camouflaged object detection. Source codes will be available at https://github.com/Haozhe-Xing/SARNet.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1051-8215
1558-2205
DOI:10.1109/TCSVT.2023.3255304