Metal dimer nanojunction-magnetic material composites for magnetic field sensing
Noble metal nanocrystals are used as high sensitivity optoelectronic sensors, such as surface-enhanced Raman scattering, SERS. The sensing performance of metal nanocrystals can be further improved by forming dimer nanojunctions with strong "plasmonic coupling". Since the strength of "...
Saved in:
Published in | Materials horizons Vol. 11; no. 2; pp. 442 - 453 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
22.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Noble metal nanocrystals are used as high sensitivity optoelectronic sensors, such as surface-enhanced Raman scattering, SERS. The sensing performance of metal nanocrystals can be further improved by forming dimer nanojunctions with strong "plasmonic coupling". Since the strength of "plasmonic coupling" is highly sensitive to the sub-nanoscale spacing between plasmonic nanocrystals in nanojunctions, nanojunctions can be used to detect external stimuli that can change the spacing of nanocrystals in the nanojunction and thus change the sensitivity of the Raman scattering spectrum. Here, we utilize this principle to detect the direction and strength of an external magnetic field (MF) using dimer nanojunctions surrounded by magnetic materials as a sensing platform. The results reveal that the changes in nanocrystal spacing in the nanojunction are caused by the rearrangement of the magnetic material under an external MF, which strongly depends on the interaction between the magnetic material and the ligands on the nanocrystal surface and the steric repulsion generated by the ligand configuration on the nanocrystal surface. Compared with the Raman spectrum without an external MF, the enhancement factors of the Raman scattering spectrum under an external MF can reach up to ∼900%, which makes dimer nanojunctions with magnetic materials suitable for "magnetic field" sensing applications.
As a magnetic field sensor, the dimer nanojunction composite has a highly sensitive Raman scattering spectrum under an external magnetic field, which is caused by a change in the nanocrystal spacing in the dimer nanojunction. |
---|---|
Bibliography: | Electronic supplementary information (ESI) available. See DOI https://doi.org/10.1039/d3mh01694c ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2051-6347 2051-6355 |
DOI: | 10.1039/d3mh01694c |