ICI cancellation for OFDM communication systems in time-varying multipath fading channels
In orthogonal frequency division multiplexing (OFDM) systems, time-varying multipath fading leads to the loss of subcarrier orthogonality and the occurrence of intercarrier interference (ICI). In this study, an efficient ICI suppression with less noise enhancement for multicarrier equalization is pr...
Saved in:
Published in | IEEE transactions on wireless communications Vol. 4; no. 5; pp. 2100 - 2110 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Piscataway, NJ
IEEE
01.09.2005
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In orthogonal frequency division multiplexing (OFDM) systems, time-varying multipath fading leads to the loss of subcarrier orthogonality and the occurrence of intercarrier interference (ICI). In this study, an efficient ICI suppression with less noise enhancement for multicarrier equalization is presented by using a parallel canceling scheme via frequency-domain equalization techniques, with the assumption that the channel impulse response (CIR) varies linearly during a block period. In order to avoid performance deterioration due to unreliable initial estimations in the parallel cancellation scheme, a cost function with proper weighting factor is introduced to improve the performance of the proposed equalizer. The proposed equalizer consists of a set of prefilters and a set of ICI cancellation filters, with two stages to perform different functions to achieve minimum mean square error (MMSE) equalization. The prefilters compensate for the multiplicative distortion at the first stage, and the ICI cancellation filters remove the effects of ICI by a parallel cancellation scheme at the second stage. Finally, the performance of the proposed equalizer is analyzed and compared with that of other equalizers, indicating significant performance improvement. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 1536-1276 1558-2248 |
DOI: | 10.1109/TWC.2005.853837 |