Spleen Tyrosine Kinase (SYK) in the Progression of Peritoneal Fibrosis Through Activation of the TGF-β1/Smad3 Signaling Pathway

BACKGROUND Long-term exposure to hypertonic and high glucose in peritoneal dialysis fluid can result in peritoneal fibrosis. Spleen tyrosine kinase (SYK) has a role in inflammation and fibrosis. This study aimed to investigate the role of SYK in an in vivo rat model of peritoneal fibrosis and in rat...

Full description

Saved in:
Bibliographic Details
Published inMedical science monitor Vol. 25; pp. 9346 - 9356
Main Authors Liu, Kang-Han, Zhou, Nan, Zou, Yan, Yang, Yi-Ya, OuYang, Sha-Xi, Liang, Yu-Mei
Format Journal Article
LanguageEnglish
Published United States International Scientific Literature, Inc 08.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:BACKGROUND Long-term exposure to hypertonic and high glucose in peritoneal dialysis fluid can result in peritoneal fibrosis. Spleen tyrosine kinase (SYK) has a role in inflammation and fibrosis. This study aimed to investigate the role of SYK in an in vivo rat model of peritoneal fibrosis and in rat peritoneal mesothelial cells (PMCs) in vitro and to investigate the underlying mechanisms. MATERIAL AND METHODS Sprague-Dawley rats (N=24) were randomized into the sham control group (N=6); the peritoneal fibrosis group (N=6) treated with intraperitoneal chlorhexidine digluconate; the SYK inhibitor group (N=6), treated with chlorhexidine digluconate and fostamatinib; and the TGF-ß inhibitor group (N=6), treated with chlorhexidine digluconate and LY2109761. The rat model underwent daily intraperitoneal injection with 0.5 ml of 0.1% chlorhexidine digluconate. Rat peritoneal mesothelial cells (PMCs) were cultured in vitro in high glucose. SYK expression was measured by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot. Enzyme-linked immunosorbent assay (ELISA) and qRT-PCR measured inflammatory mediators. Transforming growth factor-ß1 (TGF-ß1) and Smad3 were detected by Western blot. Short hairpin RNA (shRNA) was used to target the SYK gene. RESULTS SYK was upregulated in the rat model of peritoneal fibrosis and was induced rat PMCs cultured in high glucose. Knockdown of SYK and inhibition of TGF-ß1 significantly reduced fibrosis and inflammation. Findings in the in vivo rat model confirmed that SYK mediated peritoneal fibrosis by regulating TGF-ß1/Smad3 signaling. CONCLUSIONS In a rat model and in rat PMCs, expression of SYK increased peritoneal fibrosis through activation of the TGF-ß1/Smad3 signaling pathway.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Funds Collection
Data Interpretation
Literature Search
Data Collection
Study Design
Manuscript Preparation
Statistical Analysis
Kang-Han Liu and Nan Zhou are first co-authors
ISSN:1643-3750
1234-1010
1643-3750
DOI:10.12659/MSM.917287