Adaptive Fuzzy Dynamic Surface Control of Nonlinear Constrained Systems With Unknown Virtual Control Coefficients

This paper studies the problem of adaptive fuzzy dynamic surface control (DSC) of nonstrict-feedback nonlinear systems subject to unknown virtual control coefficients, dead zone, and full state constraints. The Nussbaum gain technique is used to overcome the difficulty caused by the unknown virtual...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on fuzzy systems Vol. 28; no. 8; pp. 1737 - 1747
Main Authors Wang, Lijie, Chen, C. L. Philip
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper studies the problem of adaptive fuzzy dynamic surface control (DSC) of nonstrict-feedback nonlinear systems subject to unknown virtual control coefficients, dead zone, and full state constraints. The Nussbaum gain technique is used to overcome the difficulty caused by the unknown virtual control coefficients. By utilizing the information of tan-type barrier Lyapunov function, the requirement of full state constraints is successfully achieved. In addition, to handle the problem of "explosion of complexity" resulted from backstepping itself, a DSC approach using the sliding mode differentiator is introduced. Then, based on backstepping control, we develop a new adaptive fuzzy DSC strategy, which ensures that all state constrains are not violated via designing parameters appropriately. Meanwhile, other signals existing in the closed-loop system are bounded. Finally, comparative results are provided to illustrate the effectiveness of the proposed approach.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1063-6706
1941-0034
DOI:10.1109/TFUZZ.2019.2921277