Adaptive Fuzzy Dynamic Surface Control of Nonlinear Constrained Systems With Unknown Virtual Control Coefficients
This paper studies the problem of adaptive fuzzy dynamic surface control (DSC) of nonstrict-feedback nonlinear systems subject to unknown virtual control coefficients, dead zone, and full state constraints. The Nussbaum gain technique is used to overcome the difficulty caused by the unknown virtual...
Saved in:
Published in | IEEE transactions on fuzzy systems Vol. 28; no. 8; pp. 1737 - 1747 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.08.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper studies the problem of adaptive fuzzy dynamic surface control (DSC) of nonstrict-feedback nonlinear systems subject to unknown virtual control coefficients, dead zone, and full state constraints. The Nussbaum gain technique is used to overcome the difficulty caused by the unknown virtual control coefficients. By utilizing the information of tan-type barrier Lyapunov function, the requirement of full state constraints is successfully achieved. In addition, to handle the problem of "explosion of complexity" resulted from backstepping itself, a DSC approach using the sliding mode differentiator is introduced. Then, based on backstepping control, we develop a new adaptive fuzzy DSC strategy, which ensures that all state constrains are not violated via designing parameters appropriately. Meanwhile, other signals existing in the closed-loop system are bounded. Finally, comparative results are provided to illustrate the effectiveness of the proposed approach. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1063-6706 1941-0034 |
DOI: | 10.1109/TFUZZ.2019.2921277 |