Circular-Shift Linear Network Codes With Arbitrary Odd Block Lengths

Circular-shift linear network coding (LNC) is a class of vector LNC with low encoding and decoding complexities, and with local encoding kernels chosen from cyclic permutation matrices. When <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula>...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on communications Vol. 67; no. 4; pp. 2660 - 2672
Main Authors Sun, Qifu Tyler, Tang, Hanqi, Li, Zongpeng, Yang, Xiaolong, Long, Keping
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Circular-shift linear network coding (LNC) is a class of vector LNC with low encoding and decoding complexities, and with local encoding kernels chosen from cyclic permutation matrices. When <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula> is a prime with primitive root 2, it was recently shown that a scalar linear solution over GF(<inline-formula> <tex-math notation="LaTeX">2^{L-1} </tex-math></inline-formula>) induces an <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula>-dimensional circular-shift linear solution at rate <inline-formula> <tex-math notation="LaTeX">(L-1)/L </tex-math></inline-formula>. In this paper, we prove that for arbitrary odd <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula>, every scalar linear solution over GF(<inline-formula> <tex-math notation="LaTeX">2^{m_{L}} </tex-math></inline-formula>), where <inline-formula> <tex-math notation="LaTeX">m_{L} </tex-math></inline-formula> refers to the multiplicative order of 2 modulo <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula>, can induce an <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula>-dimensional circular-shift linear solution at a certain rate. Based on the generalized connection, we further prove that for such <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula> with <inline-formula> <tex-math notation="LaTeX">m_{L} </tex-math></inline-formula> beyond a threshold, every multicast network has an <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula>-dimensional circular-shift linear solution at rate <inline-formula> <tex-math notation="LaTeX">\phi (L)/L </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">\phi (L) </tex-math></inline-formula> is the Euler's totient function of <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula>. An efficient algorithm for constructing such a solution is designed. Finally, we prove that every multicast network is asymptotically circular-shift linearly solvable.
AbstractList Circular-shift linear network coding (LNC) is a class of vector LNC with low encoding and decoding complexities, and with local encoding kernels chosen from cyclic permutation matrices. When [Formula Omitted] is a prime with primitive root 2, it was recently shown that a scalar linear solution over GF([Formula Omitted]) induces an [Formula Omitted]-dimensional circular-shift linear solution at rate [Formula Omitted]. In this paper, we prove that for arbitrary odd [Formula Omitted], every scalar linear solution over GF([Formula Omitted]), where [Formula Omitted] refers to the multiplicative order of 2 modulo [Formula Omitted], can induce an [Formula Omitted]-dimensional circular-shift linear solution at a certain rate. Based on the generalized connection, we further prove that for such [Formula Omitted] with [Formula Omitted] beyond a threshold, every multicast network has an [Formula Omitted]-dimensional circular-shift linear solution at rate [Formula Omitted], where [Formula Omitted] is the Euler’s totient function of [Formula Omitted]. An efficient algorithm for constructing such a solution is designed. Finally, we prove that every multicast network is asymptotically circular-shift linearly solvable.
Circular-shift linear network coding (LNC) is a class of vector LNC with low encoding and decoding complexities, and with local encoding kernels chosen from cyclic permutation matrices. When <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula> is a prime with primitive root 2, it was recently shown that a scalar linear solution over GF(<inline-formula> <tex-math notation="LaTeX">2^{L-1} </tex-math></inline-formula>) induces an <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula>-dimensional circular-shift linear solution at rate <inline-formula> <tex-math notation="LaTeX">(L-1)/L </tex-math></inline-formula>. In this paper, we prove that for arbitrary odd <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula>, every scalar linear solution over GF(<inline-formula> <tex-math notation="LaTeX">2^{m_{L}} </tex-math></inline-formula>), where <inline-formula> <tex-math notation="LaTeX">m_{L} </tex-math></inline-formula> refers to the multiplicative order of 2 modulo <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula>, can induce an <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula>-dimensional circular-shift linear solution at a certain rate. Based on the generalized connection, we further prove that for such <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula> with <inline-formula> <tex-math notation="LaTeX">m_{L} </tex-math></inline-formula> beyond a threshold, every multicast network has an <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula>-dimensional circular-shift linear solution at rate <inline-formula> <tex-math notation="LaTeX">\phi (L)/L </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">\phi (L) </tex-math></inline-formula> is the Euler's totient function of <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula>. An efficient algorithm for constructing such a solution is designed. Finally, we prove that every multicast network is asymptotically circular-shift linearly solvable.
Author Yang, Xiaolong
Tang, Hanqi
Long, Keping
Sun, Qifu Tyler
Li, Zongpeng
Author_xml – sequence: 1
  givenname: Qifu Tyler
  orcidid: 0000-0003-3213-1569
  surname: Sun
  fullname: Sun, Qifu Tyler
  email: qfsun@ustb.edu.cn
  organization: School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, China
– sequence: 2
  givenname: Hanqi
  orcidid: 0000-0001-7248-5500
  surname: Tang
  fullname: Tang, Hanqi
  email: b20150300@ustb.edu.cn
  organization: School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, China
– sequence: 3
  givenname: Zongpeng
  surname: Li
  fullname: Li, Zongpeng
  email: zongpeng@whu.edu.cn
  organization: School of Computer Science, Wuhan University, Wuhan, China
– sequence: 4
  givenname: Xiaolong
  orcidid: 0000-0001-5102-6962
  surname: Yang
  fullname: Yang, Xiaolong
  email: yangxl@ustb.edu.cn
  organization: School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, China
– sequence: 5
  givenname: Keping
  surname: Long
  fullname: Long, Keping
  email: longkeping@ustb.edu.cn
  organization: School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, China
BookMark eNp9kD1PwzAQhi0EEm3hD8BiiTnlYiexM5bwKbV0oBJj5Dhn6jbExXGF-PektGJgYLrlfd67e4bkuHUtEnIRwziOIb9eFPPZbMwglmMmc2AZHJFBnKYyApmKYzIAyCHKhJCnZNh1KwBIgPMBuS2s19tG-ehlaU2gU9ui8vQZw6fza1q4Gjv6asOSTnxlg1f-i87rmt40Tq_pFNu3sOzOyIlRTYfnhzkii_u7RfEYTecPT8VkGmmWpyHCXCpmuGFSSsTEVCLVQqokRV1xoWoGymilMTMVNyqF2ihhAHOWCF1Xko_I1b52493HFrtQrtzWt_3GkrG495AJyPqU3Ke0d13n0ZTaBhWsa_vrbVPGUO6UlT_Kyp2y8qCsR9kfdOPte__y_9DlHrKI-AvINE8yLvg3Fqx6KA
CODEN IECMBT
CitedBy_id crossref_primary_10_1109_LCOMM_2020_2974476
crossref_primary_10_3390_e26100822
crossref_primary_10_1109_TCOMM_2020_3001133
crossref_primary_10_1109_LCOMM_2022_3210653
crossref_primary_10_1109_OJCOMS_2024_3468873
crossref_primary_10_1109_TCOMM_2020_3041254
crossref_primary_10_1109_TCOMM_2022_3158369
Cites_doi 10.1109/ISIT.2003.1228458
10.1109/TIT.2016.2618379
10.1109/TNET.2003.818197
10.1109/CIG.2010.5592671
10.1109/TCOMM.2016.2613085
10.1109/TIT.2011.2179842
10.1109/TIT.2002.807285
10.1109/TIT.2010.2094930
10.1109/ISIT.2007.4557320
10.1007/978-3-642-17364-6
10.1109/TIT.2017.2697422
10.1109/TCOMM.2018.2827945
10.1109/TIT.2018.2797183
10.1109/TIT.2016.2553670
10.1109/LCOMM.2016.2583418
10.1109/TIT.2005.847712
10.1109/TIT.2018.2832624
10.1109/TCOMM.2010.091710.090721
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TCOMM.2018.2890260
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0857
EndPage 2672
ExternalDocumentID 10_1109_TCOMM_2018_2890260
8594637
Genre orig-research
GrantInformation_xml – fundername: Open Research Fund of Key Laboratory of Space Utilization, CAS
  grantid: LSU-DZXX-2017-03
– fundername: National Natural Science Foundation of China
  grantid: 61771045; 61471034; 61571335; 61628209
  funderid: 10.13039/501100001809
– fundername: Hubei Science Foundation
  grantid: 2016CFA030; 2017AAA125
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
ZCA
ZCG
AAYOK
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c295t-e98a2f3f2888ee4fb75c78a45ecb37ad20afcace6fb3fa50dfa7f0e9247cdb83
IEDL.DBID RIE
ISSN 0090-6778
IngestDate Mon Jun 30 10:14:55 EDT 2025
Thu Apr 24 22:59:21 EDT 2025
Tue Jul 01 02:51:29 EDT 2025
Wed Aug 27 02:45:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-e98a2f3f2888ee4fb75c78a45ecb37ad20afcace6fb3fa50dfa7f0e9247cdb83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7248-5500
0000-0001-5102-6962
0000-0003-3213-1569
PQID 2211106706
PQPubID 85472
PageCount 13
ParticipantIDs proquest_journals_2211106706
crossref_citationtrail_10_1109_TCOMM_2018_2890260
crossref_primary_10_1109_TCOMM_2018_2890260
ieee_primary_8594637
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on communications
PublicationTitleAbbrev TCOMM
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
médard (ref7) 2003
ref11
ref22
sloane (ref21) 0
ref10
ref2
ref1
ref16
ref19
ref18
ref8
ref9
lidl (ref17) 1997
ref4
ref3
ref6
ref5
silverman (ref20) 2006
diao (ref14) 2012; 58
References_xml – ident: ref18
  doi: 10.1109/ISIT.2003.1228458
– ident: ref16
  doi: 10.1109/TIT.2016.2618379
– ident: ref6
  doi: 10.1109/TNET.2003.818197
– ident: ref2
  doi: 10.1109/CIG.2010.5592671
– ident: ref9
  doi: 10.1109/TCOMM.2016.2613085
– year: 0
  ident: ref21
  article-title: Primes with primitive root 2
  publication-title: On-line encyclopedia of integer sequences
– volume: 58
  start-page: 2648
  year: 2012
  ident: ref14
  article-title: Cyclic and quasi-cyclic LDPC codes on constrained parity-check matrices and their trapping sets
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.2011.2179842
– ident: ref5
  doi: 10.1109/TIT.2002.807285
– ident: ref8
  doi: 10.1109/TIT.2010.2094930
– year: 1997
  ident: ref17
  publication-title: Finite Fields
– ident: ref1
  doi: 10.1109/ISIT.2007.4557320
– start-page: 1
  year: 2003
  ident: ref7
  article-title: On coding for non-multicast networks
  publication-title: Proc Annu Allerton Conf
– ident: ref22
  doi: 10.1007/978-3-642-17364-6
– ident: ref11
  doi: 10.1109/TIT.2017.2697422
– ident: ref15
  doi: 10.1109/TCOMM.2018.2827945
– year: 2006
  ident: ref20
  publication-title: A Friendly Introduction to Number Theory
– ident: ref12
  doi: 10.1109/TIT.2018.2797183
– ident: ref3
  doi: 10.1109/TIT.2016.2553670
– ident: ref10
  doi: 10.1109/LCOMM.2016.2583418
– ident: ref19
  doi: 10.1109/TIT.2005.847712
– ident: ref4
  doi: 10.1109/TIT.2018.2832624
– ident: ref13
  doi: 10.1109/TCOMM.2010.091710.090721
SSID ssj0004033
Score 2.3567624
Snippet Circular-shift linear network coding (LNC) is a class of vector LNC with low encoding and decoding complexities, and with local encoding kernels chosen from...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2660
SubjectTerms Algorithms
circular-shift
Circularity
Coding
Decoding
efficient construction
fractional code
Kernel
Linear codes
Multicast
Network coding
Permutations
Receivers
Sun
vector linear code
Title Circular-Shift Linear Network Codes With Arbitrary Odd Block Lengths
URI https://ieeexplore.ieee.org/document/8594637
https://www.proquest.com/docview/2211106706
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4VJhh4I8pLHtggbRoncTJCAVWIwkARbJEfZxoVtahNF349tpMUBAixZbAt6-4c32d_9xngRDKMVSSVx-PEnlaloScUVZ7SESoRBAylrUbu38W9x_DmOXpuwNmiFgYRHfkMW_bT3eWriZzbo7J2EqVhTNkSLBngVtZqfdZA-rRSnLR0dpbUBTJ-2h507_t9y-JKWu5azclRfm5C7lWVH79it79cr0O_nllJKxm15oVoyfdvoo3_nfoGrFWJJjkvI2MTGjjegtUv8oPbcNnNp46G6j0Mc10Qg0tN3JO7khlOuhOFM_KUF0MzishdfT65V4pcmA1wRG5x_FIMZzswuL4adHte9aqCJ4M0KjxMEx5oqgODfRFDLVgkWcLDyHiFMq4Cn2vJJcZaUM0jX2nOtI8GpzGpREJ3YXk8GeMeEMkZjbHDhAhVGGttoJbUNPAxtFmgxCZ0aitnslIctw9fvGYOefhp5jyTWc9klWeacLro81bqbfzZetuaetGysnITDmtnZtWSnGWBgbpWL8-P93_vdQArZuy0pOUcwnIxneORyTgKcexC7QOdLdNG
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1NbxMxEB2VcgAOtFAQgbb4ACe06dZer3cPPbRpq5Qm6YEgerP8MSZRUYKajRD8lf6V_rja3k1aAeJWidse_LWekT3PfvMM8M4IzC03NlF5EU6ryizRltnEOo5WUyrQhGzk_iDvfs4-nvPzFbha5sIgYiSfYTt8xrt8OzXzcFS2U_Ayy5loKJSn-POHB2izvZNDb833lB4fDTvdpHlDIDG05FWCZaGoY456pIeYOS24EYXKuB8DE8rSVDmjDOZOM6d4ap0SLkWPSoSxumC-2Qfw0IcZnNbJYbdJlylrJC4Df14Ui4yctNwZds76_UAbK9rxHi_qX97uevEZlz_W_rihHa_B9WIqah7LRXte6bb59ZtK5H86V-vwtAmkyX7t-c9gBSfP4ckdecUNOOyMLyPNNvk0GruKeNzth0kGNfOddKYWZ-TLuBr5VvQ46g-QM2vJgd_gL0gPJ1-r0ewFDO_jL17C6mQ6wVdAjBIsx12hdWaz3DkPJY1jNMUsRLkGW7C7MKo0jaJ6eNjjm4zIKi1ldAQZHEE2jtCCD8s632s9kX-W3giWXZZsjNqCzYXvyGbJmUnqoXzQA0zz13-v9RYedYf9nuydDE7fwGPfT1lTkDZhtbqc45aPriq9Hb2cgLxnT7kBIOE1Jw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Circular-Shift+Linear+Network+Codes+With+Arbitrary+Odd+Block+Lengths&rft.jtitle=IEEE+transactions+on+communications&rft.au=Sun%2C+Qifu+Tyler&rft.au=Tang%2C+Hanqi&rft.au=Li%2C+Zongpeng&rft.au=Yang%2C+Xiaolong&rft.date=2019-04-01&rft.pub=IEEE&rft.issn=0090-6778&rft.volume=67&rft.issue=4&rft.spage=2660&rft.epage=2672&rft_id=info:doi/10.1109%2FTCOMM.2018.2890260&rft.externalDocID=8594637
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6778&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6778&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6778&client=summon