Circular-Shift Linear Network Codes With Arbitrary Odd Block Lengths
Circular-shift linear network coding (LNC) is a class of vector LNC with low encoding and decoding complexities, and with local encoding kernels chosen from cyclic permutation matrices. When <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula>...
Saved in:
Published in | IEEE transactions on communications Vol. 67; no. 4; pp. 2660 - 2672 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.04.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Circular-shift linear network coding (LNC) is a class of vector LNC with low encoding and decoding complexities, and with local encoding kernels chosen from cyclic permutation matrices. When <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula> is a prime with primitive root 2, it was recently shown that a scalar linear solution over GF(<inline-formula> <tex-math notation="LaTeX">2^{L-1} </tex-math></inline-formula>) induces an <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula>-dimensional circular-shift linear solution at rate <inline-formula> <tex-math notation="LaTeX">(L-1)/L </tex-math></inline-formula>. In this paper, we prove that for arbitrary odd <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula>, every scalar linear solution over GF(<inline-formula> <tex-math notation="LaTeX">2^{m_{L}} </tex-math></inline-formula>), where <inline-formula> <tex-math notation="LaTeX">m_{L} </tex-math></inline-formula> refers to the multiplicative order of 2 modulo <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula>, can induce an <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula>-dimensional circular-shift linear solution at a certain rate. Based on the generalized connection, we further prove that for such <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula> with <inline-formula> <tex-math notation="LaTeX">m_{L} </tex-math></inline-formula> beyond a threshold, every multicast network has an <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula>-dimensional circular-shift linear solution at rate <inline-formula> <tex-math notation="LaTeX">\phi (L)/L </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">\phi (L) </tex-math></inline-formula> is the Euler's totient function of <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula>. An efficient algorithm for constructing such a solution is designed. Finally, we prove that every multicast network is asymptotically circular-shift linearly solvable. |
---|---|
AbstractList | Circular-shift linear network coding (LNC) is a class of vector LNC with low encoding and decoding complexities, and with local encoding kernels chosen from cyclic permutation matrices. When [Formula Omitted] is a prime with primitive root 2, it was recently shown that a scalar linear solution over GF([Formula Omitted]) induces an [Formula Omitted]-dimensional circular-shift linear solution at rate [Formula Omitted]. In this paper, we prove that for arbitrary odd [Formula Omitted], every scalar linear solution over GF([Formula Omitted]), where [Formula Omitted] refers to the multiplicative order of 2 modulo [Formula Omitted], can induce an [Formula Omitted]-dimensional circular-shift linear solution at a certain rate. Based on the generalized connection, we further prove that for such [Formula Omitted] with [Formula Omitted] beyond a threshold, every multicast network has an [Formula Omitted]-dimensional circular-shift linear solution at rate [Formula Omitted], where [Formula Omitted] is the Euler’s totient function of [Formula Omitted]. An efficient algorithm for constructing such a solution is designed. Finally, we prove that every multicast network is asymptotically circular-shift linearly solvable. Circular-shift linear network coding (LNC) is a class of vector LNC with low encoding and decoding complexities, and with local encoding kernels chosen from cyclic permutation matrices. When <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula> is a prime with primitive root 2, it was recently shown that a scalar linear solution over GF(<inline-formula> <tex-math notation="LaTeX">2^{L-1} </tex-math></inline-formula>) induces an <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula>-dimensional circular-shift linear solution at rate <inline-formula> <tex-math notation="LaTeX">(L-1)/L </tex-math></inline-formula>. In this paper, we prove that for arbitrary odd <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula>, every scalar linear solution over GF(<inline-formula> <tex-math notation="LaTeX">2^{m_{L}} </tex-math></inline-formula>), where <inline-formula> <tex-math notation="LaTeX">m_{L} </tex-math></inline-formula> refers to the multiplicative order of 2 modulo <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula>, can induce an <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula>-dimensional circular-shift linear solution at a certain rate. Based on the generalized connection, we further prove that for such <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula> with <inline-formula> <tex-math notation="LaTeX">m_{L} </tex-math></inline-formula> beyond a threshold, every multicast network has an <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula>-dimensional circular-shift linear solution at rate <inline-formula> <tex-math notation="LaTeX">\phi (L)/L </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">\phi (L) </tex-math></inline-formula> is the Euler's totient function of <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula>. An efficient algorithm for constructing such a solution is designed. Finally, we prove that every multicast network is asymptotically circular-shift linearly solvable. |
Author | Yang, Xiaolong Tang, Hanqi Long, Keping Sun, Qifu Tyler Li, Zongpeng |
Author_xml | – sequence: 1 givenname: Qifu Tyler orcidid: 0000-0003-3213-1569 surname: Sun fullname: Sun, Qifu Tyler email: qfsun@ustb.edu.cn organization: School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, China – sequence: 2 givenname: Hanqi orcidid: 0000-0001-7248-5500 surname: Tang fullname: Tang, Hanqi email: b20150300@ustb.edu.cn organization: School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, China – sequence: 3 givenname: Zongpeng surname: Li fullname: Li, Zongpeng email: zongpeng@whu.edu.cn organization: School of Computer Science, Wuhan University, Wuhan, China – sequence: 4 givenname: Xiaolong orcidid: 0000-0001-5102-6962 surname: Yang fullname: Yang, Xiaolong email: yangxl@ustb.edu.cn organization: School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, China – sequence: 5 givenname: Keping surname: Long fullname: Long, Keping email: longkeping@ustb.edu.cn organization: School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, China |
BookMark | eNp9kD1PwzAQhi0EEm3hD8BiiTnlYiexM5bwKbV0oBJj5Dhn6jbExXGF-PektGJgYLrlfd67e4bkuHUtEnIRwziOIb9eFPPZbMwglmMmc2AZHJFBnKYyApmKYzIAyCHKhJCnZNh1KwBIgPMBuS2s19tG-ehlaU2gU9ui8vQZw6fza1q4Gjv6asOSTnxlg1f-i87rmt40Tq_pFNu3sOzOyIlRTYfnhzkii_u7RfEYTecPT8VkGmmWpyHCXCpmuGFSSsTEVCLVQqokRV1xoWoGymilMTMVNyqF2ihhAHOWCF1Xko_I1b52493HFrtQrtzWt_3GkrG495AJyPqU3Ke0d13n0ZTaBhWsa_vrbVPGUO6UlT_Kyp2y8qCsR9kfdOPte__y_9DlHrKI-AvINE8yLvg3Fqx6KA |
CODEN | IECMBT |
CitedBy_id | crossref_primary_10_1109_LCOMM_2020_2974476 crossref_primary_10_3390_e26100822 crossref_primary_10_1109_TCOMM_2020_3001133 crossref_primary_10_1109_LCOMM_2022_3210653 crossref_primary_10_1109_OJCOMS_2024_3468873 crossref_primary_10_1109_TCOMM_2020_3041254 crossref_primary_10_1109_TCOMM_2022_3158369 |
Cites_doi | 10.1109/ISIT.2003.1228458 10.1109/TIT.2016.2618379 10.1109/TNET.2003.818197 10.1109/CIG.2010.5592671 10.1109/TCOMM.2016.2613085 10.1109/TIT.2011.2179842 10.1109/TIT.2002.807285 10.1109/TIT.2010.2094930 10.1109/ISIT.2007.4557320 10.1007/978-3-642-17364-6 10.1109/TIT.2017.2697422 10.1109/TCOMM.2018.2827945 10.1109/TIT.2018.2797183 10.1109/TIT.2016.2553670 10.1109/LCOMM.2016.2583418 10.1109/TIT.2005.847712 10.1109/TIT.2018.2832624 10.1109/TCOMM.2010.091710.090721 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TCOMM.2018.2890260 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0857 |
EndPage | 2672 |
ExternalDocumentID | 10_1109_TCOMM_2018_2890260 8594637 |
Genre | orig-research |
GrantInformation_xml | – fundername: Open Research Fund of Key Laboratory of Space Utilization, CAS grantid: LSU-DZXX-2017-03 – fundername: National Natural Science Foundation of China grantid: 61771045; 61471034; 61571335; 61628209 funderid: 10.13039/501100001809 – fundername: Hubei Science Foundation grantid: 2016CFA030; 2017AAA125 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IES IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 ZCA ZCG AAYOK AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c295t-e98a2f3f2888ee4fb75c78a45ecb37ad20afcace6fb3fa50dfa7f0e9247cdb83 |
IEDL.DBID | RIE |
ISSN | 0090-6778 |
IngestDate | Mon Jun 30 10:14:55 EDT 2025 Thu Apr 24 22:59:21 EDT 2025 Tue Jul 01 02:51:29 EDT 2025 Wed Aug 27 02:45:45 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-e98a2f3f2888ee4fb75c78a45ecb37ad20afcace6fb3fa50dfa7f0e9247cdb83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7248-5500 0000-0001-5102-6962 0000-0003-3213-1569 |
PQID | 2211106706 |
PQPubID | 85472 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2211106706 crossref_citationtrail_10_1109_TCOMM_2018_2890260 crossref_primary_10_1109_TCOMM_2018_2890260 ieee_primary_8594637 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-01 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on communications |
PublicationTitleAbbrev | TCOMM |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 médard (ref7) 2003 ref11 ref22 sloane (ref21) 0 ref10 ref2 ref1 ref16 ref19 ref18 ref8 ref9 lidl (ref17) 1997 ref4 ref3 ref6 ref5 silverman (ref20) 2006 diao (ref14) 2012; 58 |
References_xml | – ident: ref18 doi: 10.1109/ISIT.2003.1228458 – ident: ref16 doi: 10.1109/TIT.2016.2618379 – ident: ref6 doi: 10.1109/TNET.2003.818197 – ident: ref2 doi: 10.1109/CIG.2010.5592671 – ident: ref9 doi: 10.1109/TCOMM.2016.2613085 – year: 0 ident: ref21 article-title: Primes with primitive root 2 publication-title: On-line encyclopedia of integer sequences – volume: 58 start-page: 2648 year: 2012 ident: ref14 article-title: Cyclic and quasi-cyclic LDPC codes on constrained parity-check matrices and their trapping sets publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.2011.2179842 – ident: ref5 doi: 10.1109/TIT.2002.807285 – ident: ref8 doi: 10.1109/TIT.2010.2094930 – year: 1997 ident: ref17 publication-title: Finite Fields – ident: ref1 doi: 10.1109/ISIT.2007.4557320 – start-page: 1 year: 2003 ident: ref7 article-title: On coding for non-multicast networks publication-title: Proc Annu Allerton Conf – ident: ref22 doi: 10.1007/978-3-642-17364-6 – ident: ref11 doi: 10.1109/TIT.2017.2697422 – ident: ref15 doi: 10.1109/TCOMM.2018.2827945 – year: 2006 ident: ref20 publication-title: A Friendly Introduction to Number Theory – ident: ref12 doi: 10.1109/TIT.2018.2797183 – ident: ref3 doi: 10.1109/TIT.2016.2553670 – ident: ref10 doi: 10.1109/LCOMM.2016.2583418 – ident: ref19 doi: 10.1109/TIT.2005.847712 – ident: ref4 doi: 10.1109/TIT.2018.2832624 – ident: ref13 doi: 10.1109/TCOMM.2010.091710.090721 |
SSID | ssj0004033 |
Score | 2.3567624 |
Snippet | Circular-shift linear network coding (LNC) is a class of vector LNC with low encoding and decoding complexities, and with local encoding kernels chosen from... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2660 |
SubjectTerms | Algorithms circular-shift Circularity Coding Decoding efficient construction fractional code Kernel Linear codes Multicast Network coding Permutations Receivers Sun vector linear code |
Title | Circular-Shift Linear Network Codes With Arbitrary Odd Block Lengths |
URI | https://ieeexplore.ieee.org/document/8594637 https://www.proquest.com/docview/2211106706 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4VJhh4I8pLHtggbRoncTJCAVWIwkARbJEfZxoVtahNF349tpMUBAixZbAt6-4c32d_9xngRDKMVSSVx-PEnlaloScUVZ7SESoRBAylrUbu38W9x_DmOXpuwNmiFgYRHfkMW_bT3eWriZzbo7J2EqVhTNkSLBngVtZqfdZA-rRSnLR0dpbUBTJ-2h507_t9y-JKWu5azclRfm5C7lWVH79it79cr0O_nllJKxm15oVoyfdvoo3_nfoGrFWJJjkvI2MTGjjegtUv8oPbcNnNp46G6j0Mc10Qg0tN3JO7khlOuhOFM_KUF0MzishdfT65V4pcmA1wRG5x_FIMZzswuL4adHte9aqCJ4M0KjxMEx5oqgODfRFDLVgkWcLDyHiFMq4Cn2vJJcZaUM0jX2nOtI8GpzGpREJ3YXk8GeMeEMkZjbHDhAhVGGttoJbUNPAxtFmgxCZ0aitnslIctw9fvGYOefhp5jyTWc9klWeacLro81bqbfzZetuaetGysnITDmtnZtWSnGWBgbpWL8-P93_vdQArZuy0pOUcwnIxneORyTgKcexC7QOdLdNG |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1NbxMxEB2VcgAOtFAQgbb4ACe06dZer3cPPbRpq5Qm6YEgerP8MSZRUYKajRD8lf6V_rja3k1aAeJWidse_LWekT3PfvMM8M4IzC03NlF5EU6ryizRltnEOo5WUyrQhGzk_iDvfs4-nvPzFbha5sIgYiSfYTt8xrt8OzXzcFS2U_Ayy5loKJSn-POHB2izvZNDb833lB4fDTvdpHlDIDG05FWCZaGoY456pIeYOS24EYXKuB8DE8rSVDmjDOZOM6d4ap0SLkWPSoSxumC-2Qfw0IcZnNbJYbdJlylrJC4Df14Ui4yctNwZds76_UAbK9rxHi_qX97uevEZlz_W_rihHa_B9WIqah7LRXte6bb59ZtK5H86V-vwtAmkyX7t-c9gBSfP4ckdecUNOOyMLyPNNvk0GruKeNzth0kGNfOddKYWZ-TLuBr5VvQ46g-QM2vJgd_gL0gPJ1-r0ewFDO_jL17C6mQ6wVdAjBIsx12hdWaz3DkPJY1jNMUsRLkGW7C7MKo0jaJ6eNjjm4zIKi1ldAQZHEE2jtCCD8s632s9kX-W3giWXZZsjNqCzYXvyGbJmUnqoXzQA0zz13-v9RYedYf9nuydDE7fwGPfT1lTkDZhtbqc45aPriq9Hb2cgLxnT7kBIOE1Jw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Circular-Shift+Linear+Network+Codes+With+Arbitrary+Odd+Block+Lengths&rft.jtitle=IEEE+transactions+on+communications&rft.au=Sun%2C+Qifu+Tyler&rft.au=Tang%2C+Hanqi&rft.au=Li%2C+Zongpeng&rft.au=Yang%2C+Xiaolong&rft.date=2019-04-01&rft.pub=IEEE&rft.issn=0090-6778&rft.volume=67&rft.issue=4&rft.spage=2660&rft.epage=2672&rft_id=info:doi/10.1109%2FTCOMM.2018.2890260&rft.externalDocID=8594637 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6778&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6778&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6778&client=summon |