Circular-Shift Linear Network Codes With Arbitrary Odd Block Lengths

Circular-shift linear network coding (LNC) is a class of vector LNC with low encoding and decoding complexities, and with local encoding kernels chosen from cyclic permutation matrices. When <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula>...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on communications Vol. 67; no. 4; pp. 2660 - 2672
Main Authors Sun, Qifu Tyler, Tang, Hanqi, Li, Zongpeng, Yang, Xiaolong, Long, Keping
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Circular-shift linear network coding (LNC) is a class of vector LNC with low encoding and decoding complexities, and with local encoding kernels chosen from cyclic permutation matrices. When <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula> is a prime with primitive root 2, it was recently shown that a scalar linear solution over GF(<inline-formula> <tex-math notation="LaTeX">2^{L-1} </tex-math></inline-formula>) induces an <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula>-dimensional circular-shift linear solution at rate <inline-formula> <tex-math notation="LaTeX">(L-1)/L </tex-math></inline-formula>. In this paper, we prove that for arbitrary odd <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula>, every scalar linear solution over GF(<inline-formula> <tex-math notation="LaTeX">2^{m_{L}} </tex-math></inline-formula>), where <inline-formula> <tex-math notation="LaTeX">m_{L} </tex-math></inline-formula> refers to the multiplicative order of 2 modulo <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula>, can induce an <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula>-dimensional circular-shift linear solution at a certain rate. Based on the generalized connection, we further prove that for such <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula> with <inline-formula> <tex-math notation="LaTeX">m_{L} </tex-math></inline-formula> beyond a threshold, every multicast network has an <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula>-dimensional circular-shift linear solution at rate <inline-formula> <tex-math notation="LaTeX">\phi (L)/L </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">\phi (L) </tex-math></inline-formula> is the Euler's totient function of <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula>. An efficient algorithm for constructing such a solution is designed. Finally, we prove that every multicast network is asymptotically circular-shift linearly solvable.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0090-6778
1558-0857
DOI:10.1109/TCOMM.2018.2890260