Review of Visual Saliency Detection With Comprehensive Information

The visual saliency detection model simulates the human visual system to perceive the scene and has been widely used in many vision tasks. With the development of acquisition technology, more comprehensive information, such as depth cue, inter-image correspondence, or temporal relationship, is avail...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 29; no. 10; pp. 2941 - 2959
Main Authors Cong, Runmin, Lei, Jianjun, Fu, Huazhu, Cheng, Ming-Ming, Lin, Weisi, Huang, Qingming
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The visual saliency detection model simulates the human visual system to perceive the scene and has been widely used in many vision tasks. With the development of acquisition technology, more comprehensive information, such as depth cue, inter-image correspondence, or temporal relationship, is available to extend image saliency detection to RGBD saliency detection, co-saliency detection, or video saliency detection. The RGBD saliency detection model focuses on extracting the salient regions from RGBD images by combining the depth information. The co-saliency detection model introduces the inter-image correspondence constraint to discover the common salient object in an image group. The goal of the video saliency detection model is to locate the motion-related salient object in video sequences, which considers the motion cue and spatiotemporal constraint jointly. In this paper, we review different types of saliency detection algorithms, summarize the important issues of the existing methods, and discuss the existent problems and future works. Moreover, the evaluation datasets and quantitative measurements are briefly introduced, and the experimental analysis and discussion are conducted to provide a holistic overview of different saliency detection methods.
AbstractList The visual saliency detection model simulates the human visual system to perceive the scene and has been widely used in many vision tasks. With the development of acquisition technology, more comprehensive information, such as depth cue, inter-image correspondence, or temporal relationship, is available to extend image saliency detection to RGBD saliency detection, co-saliency detection, or video saliency detection. The RGBD saliency detection model focuses on extracting the salient regions from RGBD images by combining the depth information. The co-saliency detection model introduces the inter-image correspondence constraint to discover the common salient object in an image group. The goal of the video saliency detection model is to locate the motion-related salient object in video sequences, which considers the motion cue and spatiotemporal constraint jointly. In this paper, we review different types of saliency detection algorithms, summarize the important issues of the existing methods, and discuss the existent problems and future works. Moreover, the evaluation datasets and quantitative measurements are briefly introduced, and the experimental analysis and discussion are conducted to provide a holistic overview of different saliency detection methods.
Author Huang, Qingming
Cong, Runmin
Lin, Weisi
Fu, Huazhu
Cheng, Ming-Ming
Lei, Jianjun
Author_xml – sequence: 1
  givenname: Runmin
  orcidid: 0000-0003-0972-4008
  surname: Cong
  fullname: Cong, Runmin
  email: rmcong@tju.edu.cn
  organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China
– sequence: 2
  givenname: Jianjun
  orcidid: 0000-0003-3171-7680
  surname: Lei
  fullname: Lei, Jianjun
  email: jjlei@tju.edu.cn
  organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China
– sequence: 3
  givenname: Huazhu
  orcidid: 0000-0002-9702-5524
  surname: Fu
  fullname: Fu, Huazhu
  email: huazhufu@gmail.com
  organization: Inception Institute of Artificial Intelligence, Abu Dhabi, United Arab Emirates
– sequence: 4
  givenname: Ming-Ming
  orcidid: 0000-0001-5550-8758
  surname: Cheng
  fullname: Cheng, Ming-Ming
  email: cmm@nankai.edu.cn
  organization: School of Computer and Control Engineering, Nankai University, Tianjin, China
– sequence: 5
  givenname: Weisi
  orcidid: 0000-0001-9866-1947
  surname: Lin
  fullname: Lin, Weisi
  email: wslin@ntu.edu.sg
  organization: School of Computer Science Engineering, Nanyang Technological University, Singapore
– sequence: 6
  givenname: Qingming
  orcidid: 0000-0001-7542-296X
  surname: Huang
  fullname: Huang, Qingming
  email: qmhuang@ucas.ac.cn
  organization: School of Computer and Control Engineering, University of Chinese Academy of Sciences, Beijing, China
BookMark eNp9kE1Lw0AQhhepYFv9A3oJeE6d_czmqPWrUBBsrcew3UzoljRbN2ml_970Aw8ePM3AvM_M8PRIp_IVEnJNYUAppHfT4WQ2HTCgesB0ApqzM9KlUuqYMZCdtgdJY82ovCC9ul4CUKFF0iUP77h1-B35Ipq5emPKaGJKh5XdRY_YoG2cr6JP1yyioV-tAy6wqt0Wo1FV-LAy-_ElOS9MWePVqfbJx_PTdPgaj99eRsP7cWxZKpsYxTyxTGmKBRqRpwlYDhrQGFSaSw00TwyghDxn8zyleSrU3CohGbdoZc775Pa4dx381wbrJlv6TajakxnjAJyDEmmb0seUDb6uAxaZdc3hzyYYV2YUsr2x7GAs2xvLTsZalP1B18GtTNj9D90cIYeIv4AWSqWg-A-bZ3mV
CODEN ITCTEM
CitedBy_id crossref_primary_10_1109_TCSVT_2022_3183641
crossref_primary_10_1007_s11263_024_02051_5
crossref_primary_10_1007_s41095_020_0199_z
crossref_primary_10_1016_j_eswa_2023_119631
crossref_primary_10_1016_j_inpa_2022_05_005
crossref_primary_10_3390_electronics12071618
crossref_primary_10_1109_LSP_2020_3020735
crossref_primary_10_1109_TCYB_2021_3095512
crossref_primary_10_3390_cancers14071674
crossref_primary_10_1109_TCSVT_2021_3095843
crossref_primary_10_1007_s00138_023_01405_2
crossref_primary_10_1109_TPAMI_2022_3166451
crossref_primary_10_1109_JPHOT_2022_3192014
crossref_primary_10_1109_TITS_2022_3166208
crossref_primary_10_1109_TMM_2019_2907047
crossref_primary_10_1109_ACCESS_2023_3286577
crossref_primary_10_1016_j_neucom_2022_09_052
crossref_primary_10_1109_TMM_2022_3216476
crossref_primary_10_1109_TVT_2020_3003478
crossref_primary_10_1109_TCSVT_2021_3131474
crossref_primary_10_1109_JSTARS_2024_3365729
crossref_primary_10_1109_TIP_2022_3203605
crossref_primary_10_1038_s41467_022_33393_8
crossref_primary_10_1109_TCYB_2019_2932005
crossref_primary_10_1109_TITS_2023_3323468
crossref_primary_10_1109_TIP_2021_3054464
crossref_primary_10_1109_TCSVT_2021_3093890
crossref_primary_10_1109_JSTARS_2022_3199017
crossref_primary_10_1109_TIP_2023_3275069
crossref_primary_10_1007_s11263_022_01734_1
crossref_primary_10_1109_TCSVT_2022_3180274
crossref_primary_10_1109_TGRS_2020_2975380
crossref_primary_10_1111_cgf_14155
crossref_primary_10_1109_TCSVT_2024_3491907
crossref_primary_10_1016_j_measurement_2024_114207
crossref_primary_10_1109_TCSVT_2022_3171563
crossref_primary_10_1109_TMM_2018_2884481
crossref_primary_10_1016_j_eswa_2023_122222
crossref_primary_10_1109_ACCESS_2020_2999633
crossref_primary_10_1109_TMM_2022_3160589
crossref_primary_10_1109_TCSVT_2019_2962073
crossref_primary_10_1109_TGRS_2021_3123984
crossref_primary_10_1109_TETCI_2022_3220250
crossref_primary_10_1109_TIP_2019_2918735
crossref_primary_10_1109_TIP_2021_3050643
crossref_primary_10_1016_j_ins_2020_12_031
crossref_primary_10_1109_LGRS_2020_3006505
crossref_primary_10_1109_TCSVT_2022_3205182
crossref_primary_10_1109_TCSVT_2020_3037688
crossref_primary_10_1049_cvi2_12177
crossref_primary_10_1109_TCSVT_2021_3057368
crossref_primary_10_1109_ACCESS_2020_3039542
crossref_primary_10_1109_TCSVT_2023_3290600
crossref_primary_10_1109_TCYB_2022_3162945
crossref_primary_10_1109_TIP_2020_3014734
crossref_primary_10_3390_rs13245144
crossref_primary_10_1109_JSTARS_2024_3435675
crossref_primary_10_1109_TIP_2020_3042084
crossref_primary_10_1109_TNNLS_2022_3202241
crossref_primary_10_1364_AO_472356
crossref_primary_10_1016_j_neucom_2024_127416
crossref_primary_10_1007_s40544_023_0752_8
crossref_primary_10_1109_TCYB_2020_2969255
crossref_primary_10_1007_s00371_024_03713_8
crossref_primary_10_1109_TETCI_2021_3118043
crossref_primary_10_1109_TIP_2021_3113794
crossref_primary_10_1109_TCSVT_2022_3202563
crossref_primary_10_1109_ACCESS_2022_3166986
crossref_primary_10_1111_exsy_13508
crossref_primary_10_3389_fmars_2022_1094915
crossref_primary_10_1016_j_neucom_2020_05_083
crossref_primary_10_1109_TCYB_2021_3051350
crossref_primary_10_1016_j_neucom_2020_08_038
crossref_primary_10_1109_TGRS_2022_3208618
crossref_primary_10_1109_TPAMI_2021_3060412
crossref_primary_10_1109_TCSVT_2019_2920652
crossref_primary_10_1109_TNNLS_2020_2996406
crossref_primary_10_1007_s11263_021_01478_4
crossref_primary_10_1142_S0129065723500351
crossref_primary_10_1109_TCSVT_2021_3081761
crossref_primary_10_1017_S0263574722000297
crossref_primary_10_1109_TCSVT_2021_3127149
crossref_primary_10_1109_TGRS_2022_3145483
crossref_primary_10_1109_TCSVT_2022_3203421
crossref_primary_10_1016_j_neucom_2020_10_083
crossref_primary_10_1109_TGRS_2023_3235717
crossref_primary_10_1016_j_asoc_2021_107885
crossref_primary_10_3389_fcomp_2022_867289
crossref_primary_10_1109_TIP_2022_3212906
crossref_primary_10_1109_TMM_2021_3054526
crossref_primary_10_1016_j_eswa_2024_125975
crossref_primary_10_1109_TCSVT_2019_2955298
crossref_primary_10_1109_TCSVT_2022_3144852
crossref_primary_10_1016_j_matpr_2022_07_343
crossref_primary_10_1109_TCSVT_2021_3104932
crossref_primary_10_1016_j_oceaneng_2024_118367
crossref_primary_10_1109_ACCESS_2023_3344644
crossref_primary_10_1109_TITS_2022_3208004
crossref_primary_10_1109_ACCESS_2020_2993572
crossref_primary_10_3390_s21051815
crossref_primary_10_1109_TBIOM_2022_3216857
crossref_primary_10_1109_TII_2020_3007792
crossref_primary_10_1016_j_media_2023_102802
crossref_primary_10_1109_TIP_2021_3139232
crossref_primary_10_3390_rs13112163
crossref_primary_10_1016_j_knosys_2022_109675
crossref_primary_10_1007_s11042_021_11555_y
crossref_primary_10_1109_TCSVT_2022_3215979
crossref_primary_10_1117_1_JEI_33_1_013001
crossref_primary_10_1007_s00521_020_05313_8
crossref_primary_10_1007_s11432_022_3686_1
crossref_primary_10_1016_j_aei_2024_102780
crossref_primary_10_1109_TCSVT_2022_3185252
crossref_primary_10_1109_TCSVT_2021_3054062
crossref_primary_10_1016_j_patrec_2021_04_010
crossref_primary_10_1016_j_neucom_2021_09_020
crossref_primary_10_1016_j_cviu_2022_103611
crossref_primary_10_3390_app13084675
crossref_primary_10_1016_j_geomat_2024_100039
crossref_primary_10_1109_TCSVT_2021_3099120
crossref_primary_10_1109_TGRS_2023_3242987
crossref_primary_10_1089_3dp_2021_0224
crossref_primary_10_1109_TIP_2021_3061933
crossref_primary_10_1109_TIP_2020_2986712
crossref_primary_10_1016_j_eswa_2022_116805
crossref_primary_10_3390_rs13183601
crossref_primary_10_1109_ACCESS_2024_3402084
crossref_primary_10_1007_s11042_023_15794_z
crossref_primary_10_1016_j_autcon_2024_105709
crossref_primary_10_1016_j_imavis_2024_105302
crossref_primary_10_1109_JSTARS_2022_3179461
crossref_primary_10_1016_j_smhl_2023_100414
crossref_primary_10_3390_electronics12061303
crossref_primary_10_1631_FITEE_1900481
crossref_primary_10_1016_j_neucom_2020_12_071
crossref_primary_10_1049_sil2_12041
crossref_primary_10_1155_2022_1849995
crossref_primary_10_1109_TIP_2021_3049959
crossref_primary_10_1109_ACCESS_2019_2942158
crossref_primary_10_1016_j_knosys_2022_109006
crossref_primary_10_1109_TCSVT_2022_3225865
crossref_primary_10_1109_TIP_2022_3216198
crossref_primary_10_1016_j_neucom_2020_04_090
crossref_primary_10_1109_JSTARS_2025_3545681
crossref_primary_10_1145_3571727
crossref_primary_10_1016_j_patcog_2020_107740
crossref_primary_10_1109_TCSVT_2019_2962229
crossref_primary_10_3390_s24092795
crossref_primary_10_1109_TCSVT_2021_3082939
crossref_primary_10_1109_TGRS_2024_3362836
crossref_primary_10_1007_s00371_020_01981_8
crossref_primary_10_1016_j_jvcir_2021_103350
crossref_primary_10_1016_j_knosys_2022_110047
crossref_primary_10_1016_j_commatsci_2023_112262
crossref_primary_10_1016_j_neucom_2021_03_080
crossref_primary_10_1109_TMM_2022_3152567
crossref_primary_10_1016_j_imavis_2020_104001
crossref_primary_10_1016_j_isprsjprs_2022_11_009
crossref_primary_10_1364_AOP_398263
crossref_primary_10_1016_j_eswa_2024_125406
crossref_primary_10_1117_1_JEI_34_1_013005
crossref_primary_10_1145_3485472
crossref_primary_10_1109_TCSVT_2023_3258962
crossref_primary_10_1117_1_JRS_16_046507
crossref_primary_10_1007_s11042_024_18126_x
crossref_primary_10_1016_j_neucom_2020_05_108
crossref_primary_10_1109_TGRS_2024_3400032
crossref_primary_10_3390_s24134348
crossref_primary_10_3390_e22101174
crossref_primary_10_1109_TPAMI_2022_3169234
crossref_primary_10_1109_TPAMI_2023_3234586
crossref_primary_10_1109_TCSVT_2021_3126590
crossref_primary_10_1007_s10055_023_00822_y
crossref_primary_10_1109_ACCESS_2021_3055647
crossref_primary_10_1109_TCYB_2022_3169431
crossref_primary_10_1109_TPAMI_2023_3287356
crossref_primary_10_1109_TIM_2022_3196430
crossref_primary_10_3390_sym12091397
crossref_primary_10_1007_s10489_021_02479_z
crossref_primary_10_1109_TCSVT_2020_2985427
crossref_primary_10_1109_TPAMI_2021_3051099
crossref_primary_10_1007_s11760_022_02323_y
crossref_primary_10_1021_acsaom_3c00431
crossref_primary_10_1016_j_neucom_2020_05_110
crossref_primary_10_1109_ACCESS_2022_3225918
crossref_primary_10_1109_TMM_2024_3413529
crossref_primary_10_1080_16583655_2022_2068325
crossref_primary_10_1016_j_patcog_2020_107329
crossref_primary_10_3390_jimaging7090187
crossref_primary_10_1109_TCSVT_2022_3150923
crossref_primary_10_3390_su152014780
crossref_primary_10_1007_s11042_023_17614_w
crossref_primary_10_1109_TCSVT_2022_3201510
crossref_primary_10_1109_TMM_2020_2972165
crossref_primary_10_1109_JSTARS_2020_3003137
crossref_primary_10_1109_TCE_2022_3205376
crossref_primary_10_3390_s21123963
crossref_primary_10_1109_TMM_2020_3019688
crossref_primary_10_1109_TGRS_2020_3013673
crossref_primary_10_1109_TIP_2021_3062689
crossref_primary_10_1016_j_neucom_2022_09_019
crossref_primary_10_1080_15230406_2022_2153172
crossref_primary_10_1016_j_engappai_2023_107820
crossref_primary_10_1007_s00371_021_02231_1
crossref_primary_10_1109_ACCESS_2022_3185409
crossref_primary_10_1007_s11042_020_10426_2
crossref_primary_10_1109_TMM_2023_3335884
crossref_primary_10_1109_TIP_2023_3314285
crossref_primary_10_1109_TIP_2023_3263111
crossref_primary_10_1007_s40747_023_01093_5
crossref_primary_10_1109_TGRS_2022_3208348
crossref_primary_10_1016_j_imavis_2023_104792
crossref_primary_10_1049_ipr2_12276
crossref_primary_10_1016_j_image_2021_116218
crossref_primary_10_1007_s11042_021_11891_z
crossref_primary_10_1109_TCSVT_2022_3178430
crossref_primary_10_1109_TITS_2020_3044678
crossref_primary_10_1109_ACCESS_2025_3537083
crossref_primary_10_1109_TCSVT_2024_3480691
crossref_primary_10_1109_TCSVT_2024_3486558
crossref_primary_10_1109_TGRS_2021_3131221
crossref_primary_10_1016_j_neucom_2022_03_006
crossref_primary_10_1109_TIP_2020_3028289
crossref_primary_10_1088_2632_2153_abd614
crossref_primary_10_1109_TCSVT_2020_2992054
crossref_primary_10_1109_TGRS_2023_3260825
crossref_primary_10_32604_cmc_2024_046501
crossref_primary_10_1016_j_jvcir_2021_103151
crossref_primary_10_3390_app10155143
crossref_primary_10_1016_j_compeleceng_2021_107071
crossref_primary_10_1109_TMM_2021_3129052
crossref_primary_10_1109_TCSVT_2022_3166914
crossref_primary_10_3390_bs13100827
crossref_primary_10_1109_ACCESS_2020_3036681
crossref_primary_10_1109_TCDS_2021_3051010
crossref_primary_10_1080_22797254_2022_2133745
crossref_primary_10_1109_JSTARS_2024_3435385
crossref_primary_10_1016_j_image_2021_116224
crossref_primary_10_3390_electronics8050481
crossref_primary_10_1109_TMM_2021_3106503
crossref_primary_10_1016_j_patcog_2024_110328
crossref_primary_10_1080_08839514_2022_2094408
crossref_primary_10_3390_electronics12224600
crossref_primary_10_1016_j_trc_2024_104497
crossref_primary_10_1109_TGRS_2022_3173661
crossref_primary_10_1109_TIP_2019_2910377
crossref_primary_10_1109_TIP_2024_3461956
crossref_primary_10_1109_TGRS_2023_3300317
crossref_primary_10_1364_OL_500151
Cites_doi 10.1109/CVPR.2013.271
10.1109/CVPR.2016.121
10.5244/C.24.56
10.1016/j.neucom.2015.11.063
10.1109/ICCV.2017.32
10.1109/ICASSP.2016.7471952
10.1109/TMM.2015.2400823
10.1109/CVPR.2013.412
10.1016/j.image.2016.03.005
10.1109/CVPR.2017.404
10.1109/TCSVT.2015.2433171
10.1109/ICCV.2005.171
10.1109/WACV.2017.8
10.1109/LSP.2016.2557347
10.1109/TIP.2017.2763819
10.1109/CVPR.2018.00941
10.1109/TCYB.2017.2761361
10.1109/CVPR.2016.85
10.1117/1.JRS.9.095050
10.1109/TNNLS.2015.2488637
10.1109/CVPR.2004.291
10.1109/ICCV.2013.248
10.1109/LGRS.2013.2281827
10.1109/CVPR.2013.407
10.1109/TPAMI.2012.89
10.1109/CVPR.2016.78
10.1007/978-3-642-33709-3_8
10.1109/TIP.2017.2682981
10.1109/CVPR.2007.382973
10.1109/LSP.2016.2615293
10.1109/CVPR.2016.118
10.1109/ICCV.2013.273
10.1109/CVPR.2011.5995344
10.1109/TCYB.2017.2761775
10.1109/CVPR.2015.7298961
10.1145/2808492.2808551
10.1109/TIP.2017.2754941
10.1109/TCSVT.2017.2706264
10.1109/TIP.2015.2460013
10.1007/s11263-016-0977-3
10.1109/CVPR.2014.360
10.1109/IGARSS.2016.7729013
10.1109/TIP.2015.2425544
10.1145/3158674
10.1109/TIP.2017.2656463
10.1109/ICME.2015.7177414
10.1007/s11263-015-0822-0
10.1109/ICIP.2006.313095
10.1109/TIP.2011.2156803
10.1109/TIP.2015.2438546
10.1109/TPAMI.2010.70
10.1109/LGRS.2016.2602885
10.1007/978-3-319-10578-9_7
10.1007/s11263-016-0907-4
10.1109/TNNLS.2015.2506664
10.1007/s10844-016-0441-4
10.1109/TIP.2015.2487833
10.1109/TIP.2016.2612882
10.1109/TIP.2013.2260166
10.1109/CVPR.2011.5995415
10.1109/CVPR.2009.5206596
10.1016/j.neucom.2012.08.057
10.1109/TMM.2017.2660440
10.1109/LSP.2017.2688136
10.1109/ICME.2018.8486603
10.1109/ICME.2012.173
10.1109/TCSVT.2016.2617332
10.1109/LSP.2017.2681687
10.1109/TMM.2015.2389616
10.1109/TCYB.2017.2771488
10.1109/TMM.2016.2592325
10.1109/JETCAS.2014.2298919
10.1109/TCSVT.2014.2308642
10.1109/ICASSP.2012.6288171
10.1109/TCSVT.2016.2595324
10.1109/CVPR.2016.58
10.1109/CVPR.2017.468
10.1016/j.neucom.2016.05.045
10.1109/TIP.2016.2631900
10.1109/ICIP.2017.8296539
10.1109/TIP.2017.2670143
10.1109/ICME.2014.6890183
10.1109/TIP.2014.2305100
10.3390/rs9060597
10.1109/CVPR.2015.7298918
10.1109/TPAMI.2017.2662005
10.1109/TIP.2015.2500820
10.1109/CVPR.2013.87
10.1109/TIP.2017.2762594
10.5244/C.31.38
10.1109/ICME.2016.7552907
10.1109/TIP.2017.2711277
10.1109/TCSVT.2013.2273613
10.1109/TVCG.2016.2600594
10.1109/CVPR.2015.7299072
10.1109/ICCV.2013.370
10.1109/ICASSP.2013.6638027
10.1109/TMM.2016.2547343
10.1109/CVPR.2016.80
10.1109/CVPR.2017.563
10.1109/TIP.2017.2651369
10.1016/j.neucom.2016.05.098
10.1109/TPAMI.2015.2465960
10.1109/TCYB.2013.2265378
10.1109/LSP.2013.2292873
10.1109/LSP.2016.2611485
10.1109/TIP.2015.2495122
10.1109/LGRS.2017.2672560
10.1109/TIP.2014.2332399
10.1109/ICASSP.2016.7471896
10.1109/CVPR.2018.00322
10.1109/TPAMI.2016.2562626
10.1109/CVPR.2016.82
10.1109/LSP.2014.2364896
10.1109/CVPR.2015.7298731
10.24963/ijcai.2017/424
10.1109/TMM.2016.2636739
10.1016/j.image.2015.07.002
10.1109/TIP.2014.2336549
10.1109/TIP.2016.2526900
10.1109/CVPR.2016.257
10.1109/CVPR.2010.5540080
10.1109/TMM.2013.2271476
10.1109/ICCV.2015.75
10.1109/CVPR.2014.43
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2018.2870832
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 2959
ExternalDocumentID 10_1109_TCSVT_2018_2870832
8466906
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2017YFB1002900
– fundername: National Natural Science Foundation of China
  grantid: 61722112; 61520106002; 61731003; 61332016; 61620106009; U1636214; 61602344
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-e4b7c2681efea4d970c3080eaae6835801d7a0e50dd2bd91d946bc64523cec5d3
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Mon Jun 30 10:11:53 EDT 2025
Tue Jul 01 00:41:12 EDT 2025
Thu Apr 24 23:03:33 EDT 2025
Wed Aug 27 08:29:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-e4b7c2681efea4d970c3080eaae6835801d7a0e50dd2bd91d946bc64523cec5d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9702-5524
0000-0001-5550-8758
0000-0003-0972-4008
0000-0001-9866-1947
0000-0003-3171-7680
0000-0001-7542-296X
PQID 2300330649
PQPubID 85433
PageCount 19
ParticipantIDs proquest_journals_2300330649
crossref_citationtrail_10_1109_TCSVT_2018_2870832
ieee_primary_8466906
crossref_primary_10_1109_TCSVT_2018_2870832
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref59
ref58
ref53
ref51
ref50
ref46
ref45
ref48
ref42
ref41
ref44
ref43
qin (ref25) 2015
ref49
li (ref47) 2015
han (ref52) 2013; 43
ref8
ref7
ref9
ref3
ref6
ref5
ref100
ref101
ref40
ref35
ref37
ref36
ref31
ref30
ref33
ref32
ref39
(ref54) 2018
ref38
tao (ref4) 2017
le (ref106) 2017
ref24
ref23
ref20
ref22
ref21
ref28
ref27
ref29
ref13
ref12
ref128
ref15
ref129
ref14
ref126
ref97
ref127
ref96
ref124
ref99
ref11
ref125
ref98
ref10
ref17
ref16
ref19
ref18
ref133
ref93
ref92
ref131
ref95
ref132
ref94
niu (ref55) 2012
ref130
ref91
ref90
ref89
ref86
ref85
ref88
ref87
ref82
ref81
ref84
ref83
ref80
ref79
ref108
ref78
ref109
ref107
ref75
ref104
ref74
ref105
ref77
ref102
ref76
ref103
ref2
ref1
ref71
ref111
ref70
ref73
ref72
ref110
ref68
ref119
ref67
ref117
ref69
ref118
ref64
ref115
ref63
ref116
ref66
ref113
ref65
ref114
liu (ref34) 2011; 33
(ref112) 2013
li (ref26) 2015
ref60
ref122
ref123
ref62
ref120
ref61
ref121
References_xml – ident: ref35
  doi: 10.1109/CVPR.2013.271
– ident: ref132
  doi: 10.1109/CVPR.2016.121
– ident: ref118
  doi: 10.5244/C.24.56
– ident: ref16
  doi: 10.1016/j.neucom.2015.11.063
– ident: ref44
  doi: 10.1109/ICCV.2017.32
– ident: ref67
  doi: 10.1109/ICASSP.2016.7471952
– ident: ref10
  doi: 10.1109/TMM.2015.2400823
– ident: ref110
  doi: 10.1109/CVPR.2013.412
– ident: ref83
  doi: 10.1016/j.image.2016.03.005
– ident: ref48
  doi: 10.1109/CVPR.2017.404
– ident: ref131
  doi: 10.1109/TCSVT.2015.2433171
– ident: ref114
  doi: 10.1109/ICCV.2005.171
– ident: ref42
  doi: 10.1109/WACV.2017.8
– ident: ref70
  doi: 10.1109/LSP.2016.2557347
– ident: ref91
  doi: 10.1109/TIP.2017.2763819
– ident: ref49
  doi: 10.1109/CVPR.2018.00941
– ident: ref105
  doi: 10.1109/TCYB.2017.2761361
– ident: ref120
  doi: 10.1109/CVPR.2016.85
– ident: ref122
  doi: 10.1117/1.JRS.9.095050
– ident: ref14
  doi: 10.1109/TNNLS.2015.2488637
– start-page: 110
  year: 2015
  ident: ref25
  article-title: Saliency detection via cellular automata
  publication-title: Proc CVPR
– ident: ref53
  doi: 10.1109/CVPR.2004.291
– ident: ref23
  doi: 10.1109/ICCV.2013.248
– ident: ref121
  doi: 10.1109/LGRS.2013.2281827
– ident: ref32
  doi: 10.1109/CVPR.2013.407
– ident: ref1
  doi: 10.1109/TPAMI.2012.89
– ident: ref39
  doi: 10.1109/CVPR.2016.78
– ident: ref51
  doi: 10.1007/978-3-642-33709-3_8
– ident: ref60
  doi: 10.1109/TIP.2017.2682981
– ident: ref111
  doi: 10.1109/CVPR.2007.382973
– ident: ref90
  doi: 10.1109/LSP.2016.2615293
– ident: ref133
  doi: 10.1109/CVPR.2016.118
– ident: ref119
  doi: 10.1109/ICCV.2013.273
– ident: ref20
  doi: 10.1109/CVPR.2011.5995344
– ident: ref61
  doi: 10.1109/TCYB.2017.2761775
– ident: ref100
  doi: 10.1109/CVPR.2015.7298961
– ident: ref63
  doi: 10.1145/2808492.2808551
– start-page: 4285
  year: 2017
  ident: ref4
  article-title: Image cosegmentation via saliency-guided constrained clustering with cosine similarity
  publication-title: Proc AAAI
– ident: ref107
  doi: 10.1109/TIP.2017.2754941
– ident: ref88
  doi: 10.1109/TCSVT.2017.2706264
– ident: ref98
  doi: 10.1109/TIP.2015.2460013
– ident: ref36
  doi: 10.1007/s11263-016-0977-3
– ident: ref24
  doi: 10.1109/CVPR.2014.360
– ident: ref123
  doi: 10.1109/IGARSS.2016.7729013
– ident: ref99
  doi: 10.1109/TIP.2015.2425544
– ident: ref71
  doi: 10.1145/3158674
– ident: ref12
  doi: 10.1109/TIP.2017.2656463
– ident: ref82
  doi: 10.1109/ICME.2015.7177414
– ident: ref38
  doi: 10.1007/s11263-015-0822-0
– ident: ref9
  doi: 10.1109/ICIP.2006.313095
– ident: ref72
  doi: 10.1109/TIP.2011.2156803
– ident: ref28
  doi: 10.1109/TIP.2015.2438546
– start-page: 454
  year: 2012
  ident: ref55
  article-title: Leveraging stereopsis for saliency analysis
  publication-title: Proc CVPR
– volume: 33
  start-page: 353
  year: 2011
  ident: ref34
  article-title: Learning to detect a salient object
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2010.70
– ident: ref124
  doi: 10.1109/LGRS.2016.2602885
– ident: ref58
  doi: 10.1007/978-3-319-10578-9_7
– ident: ref116
  doi: 10.1007/s11263-016-0907-4
– ident: ref37
  doi: 10.1109/TNNLS.2015.2506664
– ident: ref19
  doi: 10.1007/s10844-016-0441-4
– ident: ref2
  doi: 10.1109/TIP.2015.2487833
– ident: ref11
  doi: 10.1109/TIP.2016.2612882
– ident: ref80
  doi: 10.1109/TIP.2013.2260166
– ident: ref73
  doi: 10.1109/CVPR.2011.5995415
– ident: ref50
  doi: 10.1109/CVPR.2009.5206596
– ident: ref56
  doi: 10.1016/j.neucom.2012.08.057
– ident: ref7
  doi: 10.1109/TMM.2017.2660440
– ident: ref69
  doi: 10.1109/LSP.2017.2688136
– ident: ref79
  doi: 10.1109/ICME.2018.8486603
– ident: ref93
  doi: 10.1109/ICME.2012.173
– ident: ref13
  doi: 10.1109/TCSVT.2016.2617332
– ident: ref84
  doi: 10.1109/LSP.2017.2681687
– ident: ref5
  doi: 10.1109/TMM.2015.2389616
– year: 2018
  ident: ref54
  publication-title: Stereo Cameras
– year: 2013
  ident: ref112
  publication-title: MSRA10K
– ident: ref92
  doi: 10.1109/TCYB.2017.2771488
– ident: ref30
  doi: 10.1109/TMM.2016.2592325
– ident: ref8
  doi: 10.1109/JETCAS.2014.2298919
– ident: ref97
  doi: 10.1109/TCSVT.2014.2308642
– ident: ref94
  doi: 10.1109/ICASSP.2012.6288171
– ident: ref104
  doi: 10.1109/TCSVT.2016.2595324
– ident: ref40
  doi: 10.1109/CVPR.2016.58
– start-page: 465
  year: 2017
  ident: ref106
  article-title: Spatiotemporal utilization of deep features for video saliency detection
  publication-title: Proc ICME
– ident: ref113
  doi: 10.1109/CVPR.2017.468
– ident: ref125
  doi: 10.1016/j.neucom.2016.05.045
– ident: ref102
  doi: 10.1109/TIP.2016.2631900
– ident: ref45
  doi: 10.1109/ICIP.2017.8296539
– start-page: 5455
  year: 2015
  ident: ref47
  article-title: Visual saliency based on multiscale deep features
  publication-title: Proc CVPR
– ident: ref103
  doi: 10.1109/TIP.2017.2670143
– ident: ref76
  doi: 10.1109/ICME.2014.6890183
– start-page: 2710
  year: 2015
  ident: ref26
  article-title: Robust saliency detection via regularized random walks ranking
  publication-title: Proc CVPR
– ident: ref57
  doi: 10.1109/TIP.2014.2305100
– ident: ref127
  doi: 10.3390/rs9060597
– ident: ref85
  doi: 10.1109/CVPR.2015.7298918
– ident: ref101
  doi: 10.1109/TPAMI.2017.2662005
– ident: ref130
  doi: 10.1109/TIP.2015.2500820
– ident: ref128
  doi: 10.1109/CVPR.2013.87
– ident: ref109
  doi: 10.1109/TIP.2017.2762594
– ident: ref108
  doi: 10.5244/C.31.38
– ident: ref65
  doi: 10.1109/ICME.2016.7552907
– ident: ref59
  doi: 10.1109/TIP.2017.2711277
– ident: ref95
  doi: 10.1109/TCSVT.2013.2273613
– ident: ref17
  doi: 10.1109/TVCG.2016.2600594
– ident: ref89
  doi: 10.1109/CVPR.2015.7299072
– ident: ref22
  doi: 10.1109/ICCV.2013.370
– ident: ref74
  doi: 10.1109/ICASSP.2013.6638027
– ident: ref15
  doi: 10.1109/TMM.2016.2547343
– ident: ref41
  doi: 10.1109/CVPR.2016.80
– ident: ref43
  doi: 10.1109/CVPR.2017.563
– ident: ref3
  doi: 10.1109/TIP.2017.2651369
– ident: ref6
  doi: 10.1016/j.neucom.2016.05.098
– ident: ref21
  doi: 10.1109/TPAMI.2015.2465960
– volume: 43
  start-page: 1318
  year: 2013
  ident: ref52
  article-title: Enhanced computer vision with microsoft Kinect sensor: A review
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2013.2265378
– ident: ref77
  doi: 10.1109/LSP.2013.2292873
– ident: ref18
  doi: 10.1109/LSP.2016.2611485
– ident: ref27
  doi: 10.1109/TIP.2015.2495122
– ident: ref126
  doi: 10.1109/LGRS.2017.2672560
– ident: ref81
  doi: 10.1109/TIP.2014.2332399
– ident: ref68
  doi: 10.1109/ICASSP.2016.7471896
– ident: ref62
  doi: 10.1109/CVPR.2018.00322
– ident: ref29
  doi: 10.1109/TPAMI.2016.2562626
– ident: ref129
  doi: 10.1109/CVPR.2016.82
– ident: ref78
  doi: 10.1109/LSP.2014.2364896
– ident: ref46
  doi: 10.1109/CVPR.2015.7298731
– ident: ref86
  doi: 10.24963/ijcai.2017/424
– ident: ref31
  doi: 10.1109/TMM.2016.2636739
– ident: ref64
  doi: 10.1016/j.image.2015.07.002
– ident: ref96
  doi: 10.1109/TIP.2014.2336549
– ident: ref117
  doi: 10.1109/TIP.2016.2526900
– ident: ref66
  doi: 10.1109/CVPR.2016.257
– ident: ref115
  doi: 10.1109/CVPR.2010.5540080
– ident: ref75
  doi: 10.1109/TMM.2013.2271476
– ident: ref87
  doi: 10.1109/ICCV.2015.75
– ident: ref33
  doi: 10.1109/CVPR.2014.43
SSID ssj0014847
Score 2.6707678
SecondaryResourceType review_article
Snippet The visual saliency detection model simulates the human visual system to perceive the scene and has been widely used in many vision tasks. With the development...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2941
SubjectTerms Algorithms
co-saliency detection
Computer simulation
depth attribute
Feature extraction
Image acquisition
Image color analysis
Image detection
Imaging
Integrated circuit modeling
inter-image correspondence
RGBD saliency detection
Salience
Saliency detection
Salient object
spatiotemporal constraint
video saliency detection
Visual perception
Visual systems
Visualization
Title Review of Visual Saliency Detection With Comprehensive Information
URI https://ieeexplore.ieee.org/document/8466906
https://www.proquest.com/docview/2300330649
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLa2neDAayAGA_XADdr1mSZHGEwT0rjswW5Vk7raBNrQ1l749STpQ7yEuFWqXUV2Etv1ZxvgSoRI_JCgiSmLTZ-gZ8YxVbAd15UGPg1T3Uxn9ESGU_9xHswbcFPXwiCiBp-hpR51Lj9Zi1z9KutJW6n66jahKQO3olarzhj4VA8Tk-6CY1Jpx6oCGZv1Jv3xbKJQXNRSaT3quV-MkJ6q8uMq1vZlsA-jamUFrOTFyjNuifdvTRv_u_QD2CsdTeO22BmH0MDVEex-aj_YhrsiMWCsU2O23OaSeiy9clWLadxjpjFaK-N5mS0MdWtscFGA3Y2yhEm9Pobp4GHSH5rlTAVTuCzITPR5KFxCHUwx9hMW2sKTTiPGMRKqUqJOEsY2BnaSuDxhTsJ8woXKfnoCRZB4J9BarVd4CkZKuGRnaHuc-5xyTgRRHgDK-JyGLnbAqYQcibLhuJp78RrpwMNmkVZMpBQTlYrpwHXN81a02_iTuq0kXVOWQu5At9JlVJ7IbSRDLdtT4RY7-53rHHbkt1kB1OtCK9vkeCEdjoxf6p32AZ740ZE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLbGOAAHXgMxGNADN-joM02OMJgGbLvswW5Vk7raBNrQ1l749SRpN_ES4lapthrZSWzXn22ACxEg8QKCJiYsMj2CrhlFVMF2HEca-CRIdDOdTpe0Bt7jyB-V4GpVC4OIGnyGdfWoc_nxTGTqV9m1tJWqr-4arEu779t5tdYqZ-BRPU5MOgy2SaUlW5bIWOy63-gN-wrHResqsUdd54sZ0nNVflzG2sI0d6CzXFsOLHmpZymvi_dvbRv_u_hd2C5cTeMm3xt7UMLpPmx9akBYgds8NWDMEmM4WWSSuif9clWNadxhqlFaU-N5ko4NdW_McZzD3Y2iiEm9PoBB877faJnFVAVTOMxPTfR4IBxCbUww8mIWWMKVbiNGERKqkqJ2HEQW-lYcOzxmdsw8woXKf7oChR-7h1CezqZ4BEZCuGRnaLmce5xyTgRRPgDKCJ0GDlbBXgo5FEXLcTX54jXUoYfFQq2YUCkmLBRThcsVz1vecONP6oqS9IqyEHIVaktdhsWZXIQy2LJcFXCx49-5zmGj1e-0w_ZD9-kENuV3WA7bq0E5nWd4Kt2PlJ_pXfcBuOXU2g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+of+Visual+Saliency+Detection+With+Comprehensive+Information&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Cong%2C+Runmin&rft.au=Lei%2C+Jianjun&rft.au=Fu%2C+Huazhu&rft.au=Cheng%2C+Ming-Ming&rft.date=2019-10-01&rft.pub=IEEE&rft.issn=1051-8215&rft.volume=29&rft.issue=10&rft.spage=2941&rft.epage=2959&rft_id=info:doi/10.1109%2FTCSVT.2018.2870832&rft.externalDocID=8466906
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon