Review of Visual Saliency Detection With Comprehensive Information

The visual saliency detection model simulates the human visual system to perceive the scene and has been widely used in many vision tasks. With the development of acquisition technology, more comprehensive information, such as depth cue, inter-image correspondence, or temporal relationship, is avail...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 29; no. 10; pp. 2941 - 2959
Main Authors Cong, Runmin, Lei, Jianjun, Fu, Huazhu, Cheng, Ming-Ming, Lin, Weisi, Huang, Qingming
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The visual saliency detection model simulates the human visual system to perceive the scene and has been widely used in many vision tasks. With the development of acquisition technology, more comprehensive information, such as depth cue, inter-image correspondence, or temporal relationship, is available to extend image saliency detection to RGBD saliency detection, co-saliency detection, or video saliency detection. The RGBD saliency detection model focuses on extracting the salient regions from RGBD images by combining the depth information. The co-saliency detection model introduces the inter-image correspondence constraint to discover the common salient object in an image group. The goal of the video saliency detection model is to locate the motion-related salient object in video sequences, which considers the motion cue and spatiotemporal constraint jointly. In this paper, we review different types of saliency detection algorithms, summarize the important issues of the existing methods, and discuss the existent problems and future works. Moreover, the evaluation datasets and quantitative measurements are briefly introduced, and the experimental analysis and discussion are conducted to provide a holistic overview of different saliency detection methods.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1051-8215
1558-2205
DOI:10.1109/TCSVT.2018.2870832