Fire Risk Assessment of Subway Stations Based on Combination Weighting of Game Theory and TOPSIS Method

With the rapid development of urban modernization, traffic congestion, travel delays, and other related inconveniences have become central features in people’s daily lives. The development of subway transit systems has alleviated some of these problems. However, numerous underground subway stations...

Full description

Saved in:
Bibliographic Details
Published inSustainability Vol. 14; no. 12; p. 7275
Main Authors Ju, Weiyi, Wu, Jie, Kang, Qingchun, Jiang, Juncheng, Xing, Zhixiang
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:With the rapid development of urban modernization, traffic congestion, travel delays, and other related inconveniences have become central features in people’s daily lives. The development of subway transit systems has alleviated some of these problems. However, numerous underground subway stations lack adequate fire safety protections, and this can cause rescue difficulties in the event of fire. Once the fire occurs, there will be huge property losses and casualties. In addition, this can have a vicious impact on sustainable development. Therefore, in order to make prevention in advance and implement targeted measures, we should quantify the risk and calculate the fire risk value. In this study, through consulting experts and analysis of data obtained from Changzhou Railway Company and the Emergency Management Bureau, the fire risk index system of subway stations was determined. We calculated the index weight by selecting the combination weighting method of game theory to eliminate the limitations and dependence of subjective and objective evaluation methods. The idea of relative closeness degree in TOPSIS method iwas introduced to calculate the risk value of each subway station. Finally, the subway station risk value model was established, and the risk values for each subway station were calculated and sorted. According to expert advice and the literature review, we divided the risk level into five levels, very high; high; moderate; low and very low. The results shown that 2 subway stations on Line 1 have very high fire risk, 2 subway stations on Line 1 have high fire risk, 2 subway stations on Line 1 have moderate fire risk, 8 subway stations on Line 1 have low fire risk, and 13 subway stations on Line 1 have very low fire risk. We hope that through this evaluation model method and the results to bring some references for local rail companies. Meanwhile, this evaluation model method also promotes resilience and sustainability in social development.
ISSN:2071-1050
2071-1050
DOI:10.3390/su14127275