DeepOPF: A Feasibility-Optimized Deep Neural Network Approach for AC Optimal Power Flow Problems

To cope with increasing uncertainty from renewable generation and flexible load, grid operators need to solve alternative current optimal power flow (AC-OPF) problems more frequently for efficient and reliable operation. In this article, we develop a deep neural network (DNN) approach, called DeepOP...

Full description

Saved in:
Bibliographic Details
Published inIEEE systems journal Vol. 17; no. 1; pp. 673 - 683
Main Authors Pan, Xiang, Chen, Minghua, Zhao, Tianyu, Low, Steven H.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To cope with increasing uncertainty from renewable generation and flexible load, grid operators need to solve alternative current optimal power flow (AC-OPF) problems more frequently for efficient and reliable operation. In this article, we develop a deep neural network (DNN) approach, called DeepOPF, for solving AC-OPF problems in a fraction of the time used by conventional iterative solvers. A key difficulty for applying machine learning techniques for solving AC-OPF problems lies in ensuring that the obtained solutions respect the equality and inequality physical and operational constraints. Generalized a prediction-and-reconstruction procedure in our previous studies, DeepOPF first trains a DNN model to predict a set of independent operating variables and then directly compute the remaining ones by solving the power flow equations. Such an approach not only preserves the power-flow balance equality constraints but also reduces the number of variables to be predicted by the DNN, cutting down the number of neurons and training data needed. DeepOPF then employs a penalty approach with a zero-order gradient estimation technique in the training process toward guaranteeing the inequality constraints. We also drive a condition for tuning the DNN size according to the desired approximation accuracy, which measures its generalization capability. It provides theoretical justification for using DNN to solve AC-OPF problems. Simulation results for IEEE 30/118/300-bus and a synthetic 2000-bus test cases demonstrate the effectiveness of the penalty approach. They also show that DeepOPF speeds up the computing time by up to two orders of magnitude as compared to a state-of-the-art iterative solver, at the expense of <inline-formula><tex-math notation="LaTeX">< </tex-math></inline-formula>0.2% cost difference.
AbstractList To cope with increasing uncertainty from renewable generation and flexible load, grid operators need to solve alternative current optimal power flow (AC-OPF) problems more frequently for efficient and reliable operation. In this article, we develop a deep neural network (DNN) approach, called DeepOPF, for solving AC-OPF problems in a fraction of the time used by conventional iterative solvers. A key difficulty for applying machine learning techniques for solving AC-OPF problems lies in ensuring that the obtained solutions respect the equality and inequality physical and operational constraints. Generalized a prediction-and-reconstruction procedure in our previous studies, DeepOPF first trains a DNN model to predict a set of independent operating variables and then directly compute the remaining ones by solving the power flow equations. Such an approach not only preserves the power-flow balance equality constraints but also reduces the number of variables to be predicted by the DNN, cutting down the number of neurons and training data needed. DeepOPF then employs a penalty approach with a zero-order gradient estimation technique in the training process toward guaranteeing the inequality constraints. We also drive a condition for tuning the DNN size according to the desired approximation accuracy, which measures its generalization capability. It provides theoretical justification for using DNN to solve AC-OPF problems. Simulation results for IEEE 30/118/300-bus and a synthetic 2000-bus test cases demonstrate the effectiveness of the penalty approach. They also show that DeepOPF speeds up the computing time by up to two orders of magnitude as compared to a state-of-the-art iterative solver, at the expense of [Formula Omitted]0.2% cost difference.
To cope with increasing uncertainty from renewable generation and flexible load, grid operators need to solve alternative current optimal power flow (AC-OPF) problems more frequently for efficient and reliable operation. In this article, we develop a deep neural network (DNN) approach, called DeepOPF, for solving AC-OPF problems in a fraction of the time used by conventional iterative solvers. A key difficulty for applying machine learning techniques for solving AC-OPF problems lies in ensuring that the obtained solutions respect the equality and inequality physical and operational constraints. Generalized a prediction-and-reconstruction procedure in our previous studies, DeepOPF first trains a DNN model to predict a set of independent operating variables and then directly compute the remaining ones by solving the power flow equations. Such an approach not only preserves the power-flow balance equality constraints but also reduces the number of variables to be predicted by the DNN, cutting down the number of neurons and training data needed. DeepOPF then employs a penalty approach with a zero-order gradient estimation technique in the training process toward guaranteeing the inequality constraints. We also drive a condition for tuning the DNN size according to the desired approximation accuracy, which measures its generalization capability. It provides theoretical justification for using DNN to solve AC-OPF problems. Simulation results for IEEE 30/118/300-bus and a synthetic 2000-bus test cases demonstrate the effectiveness of the penalty approach. They also show that DeepOPF speeds up the computing time by up to two orders of magnitude as compared to a state-of-the-art iterative solver, at the expense of <inline-formula><tex-math notation="LaTeX">< </tex-math></inline-formula>0.2% cost difference.
Author Low, Steven H.
Pan, Xiang
Zhao, Tianyu
Chen, Minghua
Author_xml – sequence: 1
  givenname: Xiang
  surname: Pan
  fullname: Pan, Xiang
  email: px018@ie.cuhk.edu.hk
  organization: Department of Information Engineering, The Chinese University of Hong Kong, Hong Kong
– sequence: 2
  givenname: Minghua
  orcidid: 0000-0003-4763-0037
  surname: Chen
  fullname: Chen, Minghua
  email: minghua.chen@cityu.edu.hk
  organization: School of Data Science, City University of Hong Kong, Hong Kong
– sequence: 3
  givenname: Tianyu
  orcidid: 0000-0002-9541-0197
  surname: Zhao
  fullname: Zhao, Tianyu
  email: zt017@ie.cuhk.edu.hk
  organization: Lenovo Machine Intelligence Center, Lenovo, Hong Kong
– sequence: 4
  givenname: Steven H.
  orcidid: 0000-0001-6476-3048
  surname: Low
  fullname: Low, Steven H.
  email: slow@caltech.edu
  organization: Department of Computing and Mathematical Sciences and Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
BookMark eNp9UMlOwzAUtFCRaAs_ABdLnFO8ZTG3qBAWVbRSy4FTcJwX4ZLGwUlVla8nXcSBA6d50sy8Gc0A9SpbAUKXlIwoJfLmef42X4wYYWzEGaFE0BPUp5KHnmRc9PY38yIaiTM0aJolIX7kh7KP3u8A6uksucUxTkA1JjOlabfetG7NynxDjncC_AJrp8oO2o11nziua2eV_sCFdTge472642d2Aw4npd3gmbNZCavmHJ0Wqmzg4ohD9JrcL8aP3mT68DSOJ55m0m89oLTgJBegNNeZIDqICJcCJMu0IjJnXFM_ZzoIsoKGoghIxnReMJXlGZOU8CG6Pvztmn2toWnTpV27qotMWRjKIAwFCzoVO6i0s03joEhr1zV325SSdLdkul8y3S2ZHpfsTNEfkzatao2tWqdM-b_16mA1APCbJSMpOpr_AAazgx4
CODEN ISJEB2
CitedBy_id crossref_primary_10_1016_j_epsr_2024_110327
crossref_primary_10_1109_TPWRS_2021_3124726
crossref_primary_10_1109_ACCESS_2024_3369068
crossref_primary_10_1109_TPWRS_2023_3326121
crossref_primary_10_3390_electronics12071698
crossref_primary_10_1016_j_energy_2024_132018
crossref_primary_10_1016_j_epsr_2024_110642
crossref_primary_10_1016_j_epsr_2024_110661
crossref_primary_10_1016_j_epsr_2024_110782
crossref_primary_10_1109_TPWRS_2024_3395248
crossref_primary_10_3390_en17061381
crossref_primary_10_1109_TPWRS_2022_3217407
crossref_primary_10_1016_j_renene_2024_120830
crossref_primary_10_3390_su16229851
crossref_primary_10_1016_j_ijepes_2023_109741
crossref_primary_10_3390_en17246431
crossref_primary_10_3390_su15010334
crossref_primary_10_1016_j_epsr_2025_111506
crossref_primary_10_1109_TSTE_2024_3452489
crossref_primary_10_1109_TPWRS_2021_3114092
crossref_primary_10_1109_JSYST_2022_3201041
crossref_primary_10_1016_j_epsr_2025_111509
crossref_primary_10_1016_j_epsr_2024_110958
crossref_primary_10_1109_TPWRS_2023_3313438
crossref_primary_10_1109_TPWRS_2022_3163381
crossref_primary_10_1016_j_epsr_2024_110658
crossref_primary_10_3390_en17020292
crossref_primary_10_1002_mrm_30014
crossref_primary_10_1109_ACCESS_2023_3337118
crossref_primary_10_1109_TSTE_2022_3223764
crossref_primary_10_1109_TETCI_2024_3377671
crossref_primary_10_1016_j_epsr_2024_110697
crossref_primary_10_3390_computers13070176
crossref_primary_10_3390_math12193064
crossref_primary_10_1109_TPWRS_2023_3317352
crossref_primary_10_1109_TPWRS_2024_3448434
crossref_primary_10_1109_TIA_2024_3462658
crossref_primary_10_1016_j_apenergy_2024_124714
crossref_primary_10_1109_ACCESS_2023_3335191
crossref_primary_10_1063_5_0235301
crossref_primary_10_1109_TPWRS_2022_3142957
crossref_primary_10_3390_su16093621
crossref_primary_10_1109_TPWRS_2024_3382266
crossref_primary_10_1109_TPWRS_2024_3406437
crossref_primary_10_1109_TSG_2024_3453667
crossref_primary_10_1109_TPWRS_2022_3212925
Cites_doi 10.1109/TPWRS.2020.2980212
10.1109/TPWRS.2020.3001919
10.1109/TCNS.2014.2323634
10.1145/3575813.3576874
10.1109/JSYST.2022.3201041
10.1109/TPWRS.2021.3054341
10.1609/aaai.v34i01.5403
10.1137/120880811
10.23919/PSCC.2018.8442859
10.1109/MLSP.2019.8918690
10.1016/j.orl.2019.08.009
10.1109/ICASSP40776.2020.9053140
10.1109/TPWRS.2020.3026379
10.1109/TSG.2017.2704922
10.1109/TSG.2019.2935711
10.1109/SmartGridComm.2019.8909795
10.1109/MSP.2020.3003837
10.1109/TCST.2013.2257780
10.1109/TPWRS.2010.2051168
10.1016/0893-6080(91)90009-T
10.1109/TCNS.2021.3124283
10.1109/TPWRS.2021.3127189
10.1109/SC41405.2020.00067
10.1109/SmartGridComm47815.2020.9303017
10.1109/SmartGridComm47815.2020.9303008
10.1109/Allerton.2012.6483453
10.1109/ACC.2016.7525170
10.1109/NAPS56150.2022.10012237
10.1109/PTC.2019.8810819
10.1109/LCSYS.2020.3044839
10.1109/GlobalSIP.2017.8309128
10.1109/TPWRS.2021.3114092
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/JSYST.2022.3201041
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1937-9234
EndPage 683
ExternalDocumentID 10_1109_JSYST_2022_3201041
9894104
Genre orig-research
GrantInformation_xml – fundername: Laboratory for AI-Powered Financial Technologies
– fundername: NSF
  grantid: 1931662
– fundername: InnoHK initiative
– fundername: C3.ai/UC Berkeley
– fundername: S2I funds
– fundername: General Research Fund from Research Grants Council, Hong Kong
  grantid: 11203122
– fundername: The Government of the HKSAR
– fundername: Caltech Resnick
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
RIA
RIE
RNS
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c295t-e11f30d4eac3cb40c680394e92bca09d23c15d2c66bf174f60b2cdf2abdb29103
IEDL.DBID RIE
ISSN 1932-8184
IngestDate Mon Jun 30 10:10:56 EDT 2025
Tue Jul 01 01:43:40 EDT 2025
Thu Apr 24 22:50:47 EDT 2025
Wed Aug 27 02:54:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-e11f30d4eac3cb40c680394e92bca09d23c15d2c66bf174f60b2cdf2abdb29103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6476-3048
0000-0003-4763-0037
0000-0002-9541-0197
PQID 2779677426
PQPubID 85494
PageCount 11
ParticipantIDs proquest_journals_2779677426
crossref_primary_10_1109_JSYST_2022_3201041
ieee_primary_9894104
crossref_citationtrail_10_1109_JSYST_2022_3201041
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-March
2023-3-00
20230301
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-March
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE systems journal
PublicationTitleAbbrev JSYST
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref14
ref11
ref55
ref10
Neelakantan (ref53) 2016
ref54
ref16
ref19
ref18
Huang (ref35) 2021
ref51
Goodfellow (ref41) 2016; 1
ref45
Safran (ref46) 2017; 70
ref42
Zhao (ref29) 2021
(ref33) 2018
Agarwal (ref43) 2010
ref44
(ref48) 2018
Carpentier (ref1) 1962; 3
ref8
ref7
(ref50) 2019
ref9
ref4
Kingma (ref52) 2015
ref3
ref6
ref40
ref34
ref37
ref31
ref30
ref32
ref39
ref38
Liang (ref47) 2017
Cain (ref2) 2012; 1
Robson (ref22) 2019
ref24
ref23
ref26
ref21
Baker (ref27) 2020
ref28
Chen (ref20) 2020
(ref49) 2022
Babaeinejadsarookolaee (ref5) 2019
Guha (ref13) 2019
Chatzos (ref15) 2020
Diehl (ref25) 2019
Zhou (ref36) 2020
Donti (ref17) 2021
References_xml – ident: ref21
  doi: 10.1109/TPWRS.2020.2980212
– volume: 70
  start-page: 2979
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2017
  ident: ref46
  article-title: Depth-width tradeoffs in approximating natural functions with neural networks
– year: 2022
  ident: ref49
  article-title: 2000-bus synthetic test case
– ident: ref30
  doi: 10.1109/TPWRS.2020.3001919
– start-page: 28
  volume-title: Proc. COLT. Omnipress
  year: 2010
  ident: ref43
  article-title: Optimal algorithms for online convex optimization with multi-point bandit feedback
– ident: ref40
  doi: 10.1109/TCNS.2014.2323634
– ident: ref55
  doi: 10.1145/3575813.3576874
– year: 2018
  ident: ref48
  article-title: Power systems test case archive
– ident: ref34
  doi: 10.1109/JSYST.2022.3201041
– ident: ref11
  doi: 10.1109/TPWRS.2021.3054341
– volume-title: Proc. Int. Conf. Learn. Representations
  year: 2015
  ident: ref52
  article-title: Adam: A method for stochastic optimization
– ident: ref32
  doi: 10.1609/aaai.v34i01.5403
– ident: ref45
  doi: 10.1137/120880811
– volume-title: Proc. Int. Conf. Learn. Representations
  year: 2016
  ident: ref53
  article-title: Adding gradient noise improves learning for very deep networks
– ident: ref19
  doi: 10.23919/PSCC.2018.8442859
– ident: ref24
  doi: 10.1109/MLSP.2019.8918690
– start-page: 1
  volume-title: Proc. 33rd Conf. Neural Inf. Process. Syst. Workshop
  year: 2019
  ident: ref25
  article-title: Warm-starting AC optimal power flow with graph neural networks
– volume: 1
  start-page: 1
  year: 2012
  ident: ref2
  article-title: History of optimal power flow and formulations
  publication-title: Federal Energy Regulatory Commission
– volume: 3
  start-page: 431
  issue: 8
  year: 1962
  ident: ref1
  article-title: Contribution to the economic dispatch problem
  publication-title: Bull. de la Societe Francoise des Electriciens
– volume-title: Proc. Int. Conf. Learn. Representations
  year: 2021
  ident: ref17
  article-title: DC3: A. learning method for optimization with hard constraints
– ident: ref39
  doi: 10.1016/j.orl.2019.08.009
– volume: 1
  volume-title: Deep Learning
  year: 2016
  ident: ref41
– ident: ref12
  doi: 10.1109/ICASSP40776.2020.9053140
– ident: ref8
  doi: 10.1109/TPWRS.2020.3026379
– year: 2021
  ident: ref29
  article-title: Ensuring DNN solution feasibility for optimization problems with convex constraints and its application to DC optimal power flow problems
– ident: ref6
  doi: 10.1109/TSG.2017.2704922
– year: 2019
  ident: ref50
  article-title: Power grid lib-v19.05
– ident: ref16
  doi: 10.1109/TSG.2019.2935711
– ident: ref7
  doi: 10.1109/SmartGridComm.2019.8909795
– ident: ref44
  doi: 10.1109/MSP.2020.3003837
– year: 2019
  ident: ref22
  article-title: Learning an optimally reduced formulation of OPF through meta-optimization
– year: 2020
  ident: ref15
  article-title: High-fidelity machine learning approximations of large-scale optimal power flow
– ident: ref54
  doi: 10.1109/TCST.2013.2257780
– year: 2020
  ident: ref27
  article-title: A learning-boosted quasi-newton method for AC optimal power flow
– ident: ref51
  doi: 10.1109/TPWRS.2010.2051168
– ident: ref10
  doi: 10.1016/0893-6080(91)90009-T
– ident: ref4
  doi: 10.1109/TCNS.2021.3124283
– ident: ref31
  doi: 10.1109/TPWRS.2021.3127189
– ident: ref26
  doi: 10.1109/SC41405.2020.00067
– year: 2018
  ident: ref33
  article-title: Pypower
– ident: ref9
  doi: 10.1109/SmartGridComm47815.2020.9303017
– ident: ref14
  doi: 10.1109/SmartGridComm47815.2020.9303008
– volume-title: Proc. Int. Conf. Learn. Representations
  year: 2017
  ident: ref47
  article-title: Why deep neural networks for function approximation
– volume-title: Proc. Int. Conf. Mach. Learn. Workshop
  year: 2019
  ident: ref13
  article-title: Machine learning for AC optimal power flow
– year: 2020
  ident: ref36
  article-title: Deriving fast AC OPF solutions via proximal policy optimization for secure and economic grid operation
– year: 2019
  ident: ref5
  article-title: The power grid library for benchmarking AC optimal power flow algorithms
– ident: ref38
  doi: 10.1109/Allerton.2012.6483453
– ident: ref42
  doi: 10.1109/ACC.2016.7525170
– ident: ref28
  doi: 10.1109/NAPS56150.2022.10012237
– volume-title: Proc. Int. Conf. Mach. Learn. Workshop
  year: 2021
  ident: ref35
  article-title: DeepOPF-NGT: A. fast unsupervised learning approach for solving AC-OPF problems without ground truth
– ident: ref18
  doi: 10.1109/PTC.2019.8810819
– year: 2020
  ident: ref20
  article-title: Learning to solve network flow problems via neural decoding
– ident: ref23
  doi: 10.1109/LCSYS.2020.3044839
– ident: ref3
  doi: 10.1109/GlobalSIP.2017.8309128
– ident: ref37
  doi: 10.1109/TPWRS.2021.3114092
SSID ssj0058579
Score 2.5939667
Snippet To cope with increasing uncertainty from renewable generation and flexible load, grid operators need to solve alternative current optimal power flow (AC-OPF)...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 673
SubjectTerms AC optimal power flow
Alternating current
Artificial neural networks
Computing time
Deep learning
deep neural network (DNN)
Flow equations
Independent variables
Iterative methods
Load modeling
Machine learning
Mathematical models
Neural networks
Power flow
Reactive power
Reliability
Solvers
Training
Voltage
Title DeepOPF: A Feasibility-Optimized Deep Neural Network Approach for AC Optimal Power Flow Problems
URI https://ieeexplore.ieee.org/document/9894104
https://www.proquest.com/docview/2779677426
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5zT_rgbYrTKXnwTdO1adouvo1pkcEusA3mU21uIM5tuA1xv94kbYc3xLdCT0rgS06-05zzHQAuCSOKeJyjlHgMEcwaiClfIuqqiCgjWsRMgXOnG96PSHscjEvgelMLI6W0yWfSMY_2Ll_M-Mr8KqsbsXDPiH9u6cAtq9UqvK5mvVZXz_ARpA8hUhTIuLTeHjwMhjoUxNjxzeUv8b4cQraryg9XbM-XeA90ipllaSXPzmrJHL7-Jtr436nvg92caMJmtjIOQElOD8HOJ_nBCni8lXLe68c3sAk1FcwTZd9RT7uRl6e1FNAYQKPfob_UzRLGYTNXIYea7sJmC1pr_b5v-q3BeDJ7g_2sS83iCIziu2HrHuUdFxDHNFgi6XnKdwXR3tjnjLg8bLg-JZJixlOXCuxzLxCYhyFTOpRRocswFwqnTDCsiYd_DMrT2VSeACgCxolKVRikmjSoiAW-alAcCc05IsKDKvAKCBKey5GbrhiTxIYlLk0sbImBLclhq4KrzZh5Jsbxp3XF4LCxzCGoglqBdJLv10WCo4iGmgnj8PT3UWdg2zSaz7LPaqC8fF3Jc01HluzCrsMPBTXbUA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB0hOAAHdkRZfeAGLrHjJDW3CqjK0lKJIsEpxJuEKC2CVgi-HttJKjYhbpEyjiw9e-Y5nnkDsMsEM4xIiTNGBGZU1LAwocY8MAkzTrRIuALnVjtuXrOzm-hmAvbHtTBaa598pqvu0d_lq4EcuV9lB04snDjxzykb9yOSV2uVftfyXq-s5xgJtmGIlSUyAT84u7q96trDIKXV0F3_MvIlDPm-Kj-csY8wjXlolXPLE0seqqOhqMr3b7KN_538AswVVBPV87WxCBO6vwSznwQIl-HuWOuny07jENWRJYNFquwbvrSO5PH-XSvkDJBT8LBfaucp46he6JAjS3hR_Qh5a_u-4zquoUZv8Io6eZ-alxW4bpx0j5q46LmAJeXREGtCTBgoZv1xKAULZFwLQs40p0JmAVc0lCRSVMaxMPYwY-JAUKkMzYQS1FKPcBUm-4O-XgOkIiGZyUwcZZY2mEREoalxmijLOhImowqQEoJUFoLkri9GL_UHk4CnHrbUwZYWsFVgbzzmKZfj-NN62eEwtiwgqMBmiXRa7NiXlCYJjy0XpvH676N2YLrZbV2kF6ft8w2YcW3n81y0TZgcPo_0liUnQ7Ht1-QHoEzemQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeepOPF%3A+A+Feasibility-Optimized+Deep+Neural+Network+Approach+for+AC+Optimal+Power+Flow+Problems&rft.jtitle=IEEE+systems+journal&rft.au=Pan%2C+Xiang&rft.au=Chen%2C+Minghua&rft.au=Zhao%2C+Tianyu&rft.au=Low%2C+Steven+H.&rft.date=2023-03-01&rft.pub=IEEE&rft.issn=1932-8184&rft.volume=17&rft.issue=1&rft.spage=673&rft.epage=683&rft_id=info:doi/10.1109%2FJSYST.2022.3201041&rft.externalDocID=9894104
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-8184&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-8184&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-8184&client=summon