DeepOPF: A Feasibility-Optimized Deep Neural Network Approach for AC Optimal Power Flow Problems
To cope with increasing uncertainty from renewable generation and flexible load, grid operators need to solve alternative current optimal power flow (AC-OPF) problems more frequently for efficient and reliable operation. In this article, we develop a deep neural network (DNN) approach, called DeepOP...
Saved in:
Published in | IEEE systems journal Vol. 17; no. 1; pp. 673 - 683 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.03.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To cope with increasing uncertainty from renewable generation and flexible load, grid operators need to solve alternative current optimal power flow (AC-OPF) problems more frequently for efficient and reliable operation. In this article, we develop a deep neural network (DNN) approach, called DeepOPF, for solving AC-OPF problems in a fraction of the time used by conventional iterative solvers. A key difficulty for applying machine learning techniques for solving AC-OPF problems lies in ensuring that the obtained solutions respect the equality and inequality physical and operational constraints. Generalized a prediction-and-reconstruction procedure in our previous studies, DeepOPF first trains a DNN model to predict a set of independent operating variables and then directly compute the remaining ones by solving the power flow equations. Such an approach not only preserves the power-flow balance equality constraints but also reduces the number of variables to be predicted by the DNN, cutting down the number of neurons and training data needed. DeepOPF then employs a penalty approach with a zero-order gradient estimation technique in the training process toward guaranteeing the inequality constraints. We also drive a condition for tuning the DNN size according to the desired approximation accuracy, which measures its generalization capability. It provides theoretical justification for using DNN to solve AC-OPF problems. Simulation results for IEEE 30/118/300-bus and a synthetic 2000-bus test cases demonstrate the effectiveness of the penalty approach. They also show that DeepOPF speeds up the computing time by up to two orders of magnitude as compared to a state-of-the-art iterative solver, at the expense of <inline-formula><tex-math notation="LaTeX">< </tex-math></inline-formula>0.2% cost difference. |
---|---|
AbstractList | To cope with increasing uncertainty from renewable generation and flexible load, grid operators need to solve alternative current optimal power flow (AC-OPF) problems more frequently for efficient and reliable operation. In this article, we develop a deep neural network (DNN) approach, called DeepOPF, for solving AC-OPF problems in a fraction of the time used by conventional iterative solvers. A key difficulty for applying machine learning techniques for solving AC-OPF problems lies in ensuring that the obtained solutions respect the equality and inequality physical and operational constraints. Generalized a prediction-and-reconstruction procedure in our previous studies, DeepOPF first trains a DNN model to predict a set of independent operating variables and then directly compute the remaining ones by solving the power flow equations. Such an approach not only preserves the power-flow balance equality constraints but also reduces the number of variables to be predicted by the DNN, cutting down the number of neurons and training data needed. DeepOPF then employs a penalty approach with a zero-order gradient estimation technique in the training process toward guaranteeing the inequality constraints. We also drive a condition for tuning the DNN size according to the desired approximation accuracy, which measures its generalization capability. It provides theoretical justification for using DNN to solve AC-OPF problems. Simulation results for IEEE 30/118/300-bus and a synthetic 2000-bus test cases demonstrate the effectiveness of the penalty approach. They also show that DeepOPF speeds up the computing time by up to two orders of magnitude as compared to a state-of-the-art iterative solver, at the expense of [Formula Omitted]0.2% cost difference. To cope with increasing uncertainty from renewable generation and flexible load, grid operators need to solve alternative current optimal power flow (AC-OPF) problems more frequently for efficient and reliable operation. In this article, we develop a deep neural network (DNN) approach, called DeepOPF, for solving AC-OPF problems in a fraction of the time used by conventional iterative solvers. A key difficulty for applying machine learning techniques for solving AC-OPF problems lies in ensuring that the obtained solutions respect the equality and inequality physical and operational constraints. Generalized a prediction-and-reconstruction procedure in our previous studies, DeepOPF first trains a DNN model to predict a set of independent operating variables and then directly compute the remaining ones by solving the power flow equations. Such an approach not only preserves the power-flow balance equality constraints but also reduces the number of variables to be predicted by the DNN, cutting down the number of neurons and training data needed. DeepOPF then employs a penalty approach with a zero-order gradient estimation technique in the training process toward guaranteeing the inequality constraints. We also drive a condition for tuning the DNN size according to the desired approximation accuracy, which measures its generalization capability. It provides theoretical justification for using DNN to solve AC-OPF problems. Simulation results for IEEE 30/118/300-bus and a synthetic 2000-bus test cases demonstrate the effectiveness of the penalty approach. They also show that DeepOPF speeds up the computing time by up to two orders of magnitude as compared to a state-of-the-art iterative solver, at the expense of <inline-formula><tex-math notation="LaTeX">< </tex-math></inline-formula>0.2% cost difference. |
Author | Low, Steven H. Pan, Xiang Zhao, Tianyu Chen, Minghua |
Author_xml | – sequence: 1 givenname: Xiang surname: Pan fullname: Pan, Xiang email: px018@ie.cuhk.edu.hk organization: Department of Information Engineering, The Chinese University of Hong Kong, Hong Kong – sequence: 2 givenname: Minghua orcidid: 0000-0003-4763-0037 surname: Chen fullname: Chen, Minghua email: minghua.chen@cityu.edu.hk organization: School of Data Science, City University of Hong Kong, Hong Kong – sequence: 3 givenname: Tianyu orcidid: 0000-0002-9541-0197 surname: Zhao fullname: Zhao, Tianyu email: zt017@ie.cuhk.edu.hk organization: Lenovo Machine Intelligence Center, Lenovo, Hong Kong – sequence: 4 givenname: Steven H. orcidid: 0000-0001-6476-3048 surname: Low fullname: Low, Steven H. email: slow@caltech.edu organization: Department of Computing and Mathematical Sciences and Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA |
BookMark | eNp9UMlOwzAUtFCRaAs_ABdLnFO8ZTG3qBAWVbRSy4FTcJwX4ZLGwUlVla8nXcSBA6d50sy8Gc0A9SpbAUKXlIwoJfLmef42X4wYYWzEGaFE0BPUp5KHnmRc9PY38yIaiTM0aJolIX7kh7KP3u8A6uksucUxTkA1JjOlabfetG7NynxDjncC_AJrp8oO2o11nziua2eV_sCFdTge472642d2Aw4npd3gmbNZCavmHJ0Wqmzg4ohD9JrcL8aP3mT68DSOJ55m0m89oLTgJBegNNeZIDqICJcCJMu0IjJnXFM_ZzoIsoKGoghIxnReMJXlGZOU8CG6Pvztmn2toWnTpV27qotMWRjKIAwFCzoVO6i0s03joEhr1zV325SSdLdkul8y3S2ZHpfsTNEfkzatao2tWqdM-b_16mA1APCbJSMpOpr_AAazgx4 |
CODEN | ISJEB2 |
CitedBy_id | crossref_primary_10_1016_j_epsr_2024_110327 crossref_primary_10_1109_TPWRS_2021_3124726 crossref_primary_10_1109_ACCESS_2024_3369068 crossref_primary_10_1109_TPWRS_2023_3326121 crossref_primary_10_3390_electronics12071698 crossref_primary_10_1016_j_energy_2024_132018 crossref_primary_10_1016_j_epsr_2024_110642 crossref_primary_10_1016_j_epsr_2024_110661 crossref_primary_10_1016_j_epsr_2024_110782 crossref_primary_10_1109_TPWRS_2024_3395248 crossref_primary_10_3390_en17061381 crossref_primary_10_1109_TPWRS_2022_3217407 crossref_primary_10_1016_j_renene_2024_120830 crossref_primary_10_3390_su16229851 crossref_primary_10_1016_j_ijepes_2023_109741 crossref_primary_10_3390_en17246431 crossref_primary_10_3390_su15010334 crossref_primary_10_1016_j_epsr_2025_111506 crossref_primary_10_1109_TSTE_2024_3452489 crossref_primary_10_1109_TPWRS_2021_3114092 crossref_primary_10_1109_JSYST_2022_3201041 crossref_primary_10_1016_j_epsr_2025_111509 crossref_primary_10_1016_j_epsr_2024_110958 crossref_primary_10_1109_TPWRS_2023_3313438 crossref_primary_10_1109_TPWRS_2022_3163381 crossref_primary_10_1016_j_epsr_2024_110658 crossref_primary_10_3390_en17020292 crossref_primary_10_1002_mrm_30014 crossref_primary_10_1109_ACCESS_2023_3337118 crossref_primary_10_1109_TSTE_2022_3223764 crossref_primary_10_1109_TETCI_2024_3377671 crossref_primary_10_1016_j_epsr_2024_110697 crossref_primary_10_3390_computers13070176 crossref_primary_10_3390_math12193064 crossref_primary_10_1109_TPWRS_2023_3317352 crossref_primary_10_1109_TPWRS_2024_3448434 crossref_primary_10_1109_TIA_2024_3462658 crossref_primary_10_1016_j_apenergy_2024_124714 crossref_primary_10_1109_ACCESS_2023_3335191 crossref_primary_10_1063_5_0235301 crossref_primary_10_1109_TPWRS_2022_3142957 crossref_primary_10_3390_su16093621 crossref_primary_10_1109_TPWRS_2024_3382266 crossref_primary_10_1109_TPWRS_2024_3406437 crossref_primary_10_1109_TSG_2024_3453667 crossref_primary_10_1109_TPWRS_2022_3212925 |
Cites_doi | 10.1109/TPWRS.2020.2980212 10.1109/TPWRS.2020.3001919 10.1109/TCNS.2014.2323634 10.1145/3575813.3576874 10.1109/JSYST.2022.3201041 10.1109/TPWRS.2021.3054341 10.1609/aaai.v34i01.5403 10.1137/120880811 10.23919/PSCC.2018.8442859 10.1109/MLSP.2019.8918690 10.1016/j.orl.2019.08.009 10.1109/ICASSP40776.2020.9053140 10.1109/TPWRS.2020.3026379 10.1109/TSG.2017.2704922 10.1109/TSG.2019.2935711 10.1109/SmartGridComm.2019.8909795 10.1109/MSP.2020.3003837 10.1109/TCST.2013.2257780 10.1109/TPWRS.2010.2051168 10.1016/0893-6080(91)90009-T 10.1109/TCNS.2021.3124283 10.1109/TPWRS.2021.3127189 10.1109/SC41405.2020.00067 10.1109/SmartGridComm47815.2020.9303017 10.1109/SmartGridComm47815.2020.9303008 10.1109/Allerton.2012.6483453 10.1109/ACC.2016.7525170 10.1109/NAPS56150.2022.10012237 10.1109/PTC.2019.8810819 10.1109/LCSYS.2020.3044839 10.1109/GlobalSIP.2017.8309128 10.1109/TPWRS.2021.3114092 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/JSYST.2022.3201041 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1937-9234 |
EndPage | 683 |
ExternalDocumentID | 10_1109_JSYST_2022_3201041 9894104 |
Genre | orig-research |
GrantInformation_xml | – fundername: Laboratory for AI-Powered Financial Technologies – fundername: NSF grantid: 1931662 – fundername: InnoHK initiative – fundername: C3.ai/UC Berkeley – fundername: S2I funds – fundername: General Research Fund from Research Grants Council, Hong Kong grantid: 11203122 – fundername: The Government of the HKSAR – fundername: Caltech Resnick |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL RIA RIE RNS AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c295t-e11f30d4eac3cb40c680394e92bca09d23c15d2c66bf174f60b2cdf2abdb29103 |
IEDL.DBID | RIE |
ISSN | 1932-8184 |
IngestDate | Mon Jun 30 10:10:56 EDT 2025 Tue Jul 01 01:43:40 EDT 2025 Thu Apr 24 22:50:47 EDT 2025 Wed Aug 27 02:54:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-e11f30d4eac3cb40c680394e92bca09d23c15d2c66bf174f60b2cdf2abdb29103 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6476-3048 0000-0003-4763-0037 0000-0002-9541-0197 |
PQID | 2779677426 |
PQPubID | 85494 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2779677426 crossref_primary_10_1109_JSYST_2022_3201041 ieee_primary_9894104 crossref_citationtrail_10_1109_JSYST_2022_3201041 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-March 2023-3-00 20230301 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-March |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE systems journal |
PublicationTitleAbbrev | JSYST |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref12 ref14 ref11 ref55 ref10 Neelakantan (ref53) 2016 ref54 ref16 ref19 ref18 Huang (ref35) 2021 ref51 Goodfellow (ref41) 2016; 1 ref45 Safran (ref46) 2017; 70 ref42 Zhao (ref29) 2021 (ref33) 2018 Agarwal (ref43) 2010 ref44 (ref48) 2018 Carpentier (ref1) 1962; 3 ref8 ref7 (ref50) 2019 ref9 ref4 Kingma (ref52) 2015 ref3 ref6 ref40 ref34 ref37 ref31 ref30 ref32 ref39 ref38 Liang (ref47) 2017 Cain (ref2) 2012; 1 Robson (ref22) 2019 ref24 ref23 ref26 ref21 Baker (ref27) 2020 ref28 Chen (ref20) 2020 (ref49) 2022 Babaeinejadsarookolaee (ref5) 2019 Guha (ref13) 2019 Chatzos (ref15) 2020 Diehl (ref25) 2019 Zhou (ref36) 2020 Donti (ref17) 2021 |
References_xml | – ident: ref21 doi: 10.1109/TPWRS.2020.2980212 – volume: 70 start-page: 2979 volume-title: Proc. Int. Conf. Mach. Learn. year: 2017 ident: ref46 article-title: Depth-width tradeoffs in approximating natural functions with neural networks – year: 2022 ident: ref49 article-title: 2000-bus synthetic test case – ident: ref30 doi: 10.1109/TPWRS.2020.3001919 – start-page: 28 volume-title: Proc. COLT. Omnipress year: 2010 ident: ref43 article-title: Optimal algorithms for online convex optimization with multi-point bandit feedback – ident: ref40 doi: 10.1109/TCNS.2014.2323634 – ident: ref55 doi: 10.1145/3575813.3576874 – year: 2018 ident: ref48 article-title: Power systems test case archive – ident: ref34 doi: 10.1109/JSYST.2022.3201041 – ident: ref11 doi: 10.1109/TPWRS.2021.3054341 – volume-title: Proc. Int. Conf. Learn. Representations year: 2015 ident: ref52 article-title: Adam: A method for stochastic optimization – ident: ref32 doi: 10.1609/aaai.v34i01.5403 – ident: ref45 doi: 10.1137/120880811 – volume-title: Proc. Int. Conf. Learn. Representations year: 2016 ident: ref53 article-title: Adding gradient noise improves learning for very deep networks – ident: ref19 doi: 10.23919/PSCC.2018.8442859 – ident: ref24 doi: 10.1109/MLSP.2019.8918690 – start-page: 1 volume-title: Proc. 33rd Conf. Neural Inf. Process. Syst. Workshop year: 2019 ident: ref25 article-title: Warm-starting AC optimal power flow with graph neural networks – volume: 1 start-page: 1 year: 2012 ident: ref2 article-title: History of optimal power flow and formulations publication-title: Federal Energy Regulatory Commission – volume: 3 start-page: 431 issue: 8 year: 1962 ident: ref1 article-title: Contribution to the economic dispatch problem publication-title: Bull. de la Societe Francoise des Electriciens – volume-title: Proc. Int. Conf. Learn. Representations year: 2021 ident: ref17 article-title: DC3: A. learning method for optimization with hard constraints – ident: ref39 doi: 10.1016/j.orl.2019.08.009 – volume: 1 volume-title: Deep Learning year: 2016 ident: ref41 – ident: ref12 doi: 10.1109/ICASSP40776.2020.9053140 – ident: ref8 doi: 10.1109/TPWRS.2020.3026379 – year: 2021 ident: ref29 article-title: Ensuring DNN solution feasibility for optimization problems with convex constraints and its application to DC optimal power flow problems – ident: ref6 doi: 10.1109/TSG.2017.2704922 – year: 2019 ident: ref50 article-title: Power grid lib-v19.05 – ident: ref16 doi: 10.1109/TSG.2019.2935711 – ident: ref7 doi: 10.1109/SmartGridComm.2019.8909795 – ident: ref44 doi: 10.1109/MSP.2020.3003837 – year: 2019 ident: ref22 article-title: Learning an optimally reduced formulation of OPF through meta-optimization – year: 2020 ident: ref15 article-title: High-fidelity machine learning approximations of large-scale optimal power flow – ident: ref54 doi: 10.1109/TCST.2013.2257780 – year: 2020 ident: ref27 article-title: A learning-boosted quasi-newton method for AC optimal power flow – ident: ref51 doi: 10.1109/TPWRS.2010.2051168 – ident: ref10 doi: 10.1016/0893-6080(91)90009-T – ident: ref4 doi: 10.1109/TCNS.2021.3124283 – ident: ref31 doi: 10.1109/TPWRS.2021.3127189 – ident: ref26 doi: 10.1109/SC41405.2020.00067 – year: 2018 ident: ref33 article-title: Pypower – ident: ref9 doi: 10.1109/SmartGridComm47815.2020.9303017 – ident: ref14 doi: 10.1109/SmartGridComm47815.2020.9303008 – volume-title: Proc. Int. Conf. Learn. Representations year: 2017 ident: ref47 article-title: Why deep neural networks for function approximation – volume-title: Proc. Int. Conf. Mach. Learn. Workshop year: 2019 ident: ref13 article-title: Machine learning for AC optimal power flow – year: 2020 ident: ref36 article-title: Deriving fast AC OPF solutions via proximal policy optimization for secure and economic grid operation – year: 2019 ident: ref5 article-title: The power grid library for benchmarking AC optimal power flow algorithms – ident: ref38 doi: 10.1109/Allerton.2012.6483453 – ident: ref42 doi: 10.1109/ACC.2016.7525170 – ident: ref28 doi: 10.1109/NAPS56150.2022.10012237 – volume-title: Proc. Int. Conf. Mach. Learn. Workshop year: 2021 ident: ref35 article-title: DeepOPF-NGT: A. fast unsupervised learning approach for solving AC-OPF problems without ground truth – ident: ref18 doi: 10.1109/PTC.2019.8810819 – year: 2020 ident: ref20 article-title: Learning to solve network flow problems via neural decoding – ident: ref23 doi: 10.1109/LCSYS.2020.3044839 – ident: ref3 doi: 10.1109/GlobalSIP.2017.8309128 – ident: ref37 doi: 10.1109/TPWRS.2021.3114092 |
SSID | ssj0058579 |
Score | 2.5939667 |
Snippet | To cope with increasing uncertainty from renewable generation and flexible load, grid operators need to solve alternative current optimal power flow (AC-OPF)... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 673 |
SubjectTerms | AC optimal power flow Alternating current Artificial neural networks Computing time Deep learning deep neural network (DNN) Flow equations Independent variables Iterative methods Load modeling Machine learning Mathematical models Neural networks Power flow Reactive power Reliability Solvers Training Voltage |
Title | DeepOPF: A Feasibility-Optimized Deep Neural Network Approach for AC Optimal Power Flow Problems |
URI | https://ieeexplore.ieee.org/document/9894104 https://www.proquest.com/docview/2779677426 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5zT_rgbYrTKXnwTdO1adouvo1pkcEusA3mU21uIM5tuA1xv94kbYc3xLdCT0rgS06-05zzHQAuCSOKeJyjlHgMEcwaiClfIuqqiCgjWsRMgXOnG96PSHscjEvgelMLI6W0yWfSMY_2Ll_M-Mr8KqsbsXDPiH9u6cAtq9UqvK5mvVZXz_ARpA8hUhTIuLTeHjwMhjoUxNjxzeUv8b4cQraryg9XbM-XeA90ipllaSXPzmrJHL7-Jtr436nvg92caMJmtjIOQElOD8HOJ_nBCni8lXLe68c3sAk1FcwTZd9RT7uRl6e1FNAYQKPfob_UzRLGYTNXIYea7sJmC1pr_b5v-q3BeDJ7g_2sS83iCIziu2HrHuUdFxDHNFgi6XnKdwXR3tjnjLg8bLg-JZJixlOXCuxzLxCYhyFTOpRRocswFwqnTDCsiYd_DMrT2VSeACgCxolKVRikmjSoiAW-alAcCc05IsKDKvAKCBKey5GbrhiTxIYlLk0sbImBLclhq4KrzZh5Jsbxp3XF4LCxzCGoglqBdJLv10WCo4iGmgnj8PT3UWdg2zSaz7LPaqC8fF3Jc01HluzCrsMPBTXbUA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB0hOAAHdkRZfeAGLrHjJDW3CqjK0lKJIsEpxJuEKC2CVgi-HttJKjYhbpEyjiw9e-Y5nnkDsMsEM4xIiTNGBGZU1LAwocY8MAkzTrRIuALnVjtuXrOzm-hmAvbHtTBaa598pqvu0d_lq4EcuV9lB04snDjxzykb9yOSV2uVftfyXq-s5xgJtmGIlSUyAT84u7q96trDIKXV0F3_MvIlDPm-Kj-csY8wjXlolXPLE0seqqOhqMr3b7KN_538AswVVBPV87WxCBO6vwSznwQIl-HuWOuny07jENWRJYNFquwbvrSO5PH-XSvkDJBT8LBfaucp46he6JAjS3hR_Qh5a_u-4zquoUZv8Io6eZ-alxW4bpx0j5q46LmAJeXREGtCTBgoZv1xKAULZFwLQs40p0JmAVc0lCRSVMaxMPYwY-JAUKkMzYQS1FKPcBUm-4O-XgOkIiGZyUwcZZY2mEREoalxmijLOhImowqQEoJUFoLkri9GL_UHk4CnHrbUwZYWsFVgbzzmKZfj-NN62eEwtiwgqMBmiXRa7NiXlCYJjy0XpvH676N2YLrZbV2kF6ft8w2YcW3n81y0TZgcPo_0liUnQ7Ht1-QHoEzemQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeepOPF%3A+A+Feasibility-Optimized+Deep+Neural+Network+Approach+for+AC+Optimal+Power+Flow+Problems&rft.jtitle=IEEE+systems+journal&rft.au=Pan%2C+Xiang&rft.au=Chen%2C+Minghua&rft.au=Zhao%2C+Tianyu&rft.au=Low%2C+Steven+H.&rft.date=2023-03-01&rft.pub=IEEE&rft.issn=1932-8184&rft.volume=17&rft.issue=1&rft.spage=673&rft.epage=683&rft_id=info:doi/10.1109%2FJSYST.2022.3201041&rft.externalDocID=9894104 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-8184&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-8184&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-8184&client=summon |