DeepOPF: A Feasibility-Optimized Deep Neural Network Approach for AC Optimal Power Flow Problems

To cope with increasing uncertainty from renewable generation and flexible load, grid operators need to solve alternative current optimal power flow (AC-OPF) problems more frequently for efficient and reliable operation. In this article, we develop a deep neural network (DNN) approach, called DeepOP...

Full description

Saved in:
Bibliographic Details
Published inIEEE systems journal Vol. 17; no. 1; pp. 673 - 683
Main Authors Pan, Xiang, Chen, Minghua, Zhao, Tianyu, Low, Steven H.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:To cope with increasing uncertainty from renewable generation and flexible load, grid operators need to solve alternative current optimal power flow (AC-OPF) problems more frequently for efficient and reliable operation. In this article, we develop a deep neural network (DNN) approach, called DeepOPF, for solving AC-OPF problems in a fraction of the time used by conventional iterative solvers. A key difficulty for applying machine learning techniques for solving AC-OPF problems lies in ensuring that the obtained solutions respect the equality and inequality physical and operational constraints. Generalized a prediction-and-reconstruction procedure in our previous studies, DeepOPF first trains a DNN model to predict a set of independent operating variables and then directly compute the remaining ones by solving the power flow equations. Such an approach not only preserves the power-flow balance equality constraints but also reduces the number of variables to be predicted by the DNN, cutting down the number of neurons and training data needed. DeepOPF then employs a penalty approach with a zero-order gradient estimation technique in the training process toward guaranteeing the inequality constraints. We also drive a condition for tuning the DNN size according to the desired approximation accuracy, which measures its generalization capability. It provides theoretical justification for using DNN to solve AC-OPF problems. Simulation results for IEEE 30/118/300-bus and a synthetic 2000-bus test cases demonstrate the effectiveness of the penalty approach. They also show that DeepOPF speeds up the computing time by up to two orders of magnitude as compared to a state-of-the-art iterative solver, at the expense of <inline-formula><tex-math notation="LaTeX">< </tex-math></inline-formula>0.2% cost difference.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1932-8184
1937-9234
DOI:10.1109/JSYST.2022.3201041