Computationally Efficient Data-Driven Joint Chance Constraints for Power Systems Scheduling

Although data-driven nonparametric Joint Chance Constraints (JCCs) may lead to more reliable decision-making than individual chance constraints, their computational complexity is a major bottleneck. This paper presents computationally efficient data-driven nonparametric joint chance-constrained prog...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on power systems Vol. 38; no. 3; pp. 2858 - 2867
Main Authors Wu, Chutian, Kargarian, Amin
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Although data-driven nonparametric Joint Chance Constraints (JCCs) may lead to more reliable decision-making than individual chance constraints, their computational complexity is a major bottleneck. This paper presents computationally efficient data-driven nonparametric joint chance-constrained programming for multi-interval power systems management. Reserve and transmission line constraints are modeled as data-driven JCCs. Piecewise uniform kernel functions incorporate historical data of uncertain parameters into optimization. Data-driven nonparametric JCCs are modeled as a product of integrated kernel functions. Two approaches are proposed to linearize data-driven nonparametric JCCs. i) The noncontinuous kernel function is linearized with Special Ordered Sets of type 1 (SOS1) variables. ii) A tight convex envelope of multilinear monomial terms, which appear due to the product of kernel functions, is approximated by an optimization subproblem making the scheduling problem bi-level optimization. The continuity and linearity of the lower-level convex envelope approximation subproblem allow replacing it with optimality conditions to form a single-level scheduling problem. Simulation results show the tightness of the proposed linearization approaches and the computational efficiency of data-driven JCC programming.
ISSN:0885-8950
1558-0679
DOI:10.1109/TPWRS.2022.3195127