Deep Reinforcement Learning Based Resource Allocation in Multi-UAV-Aided MEC Networks
Resource allocation for mobile edge computing (MEC) in unmanned aerial vehicle (UAV) networks has been a popular research issue. Different from existing works, this paper considers a multi-UAV-aided uplink communication scenario and investigates a resource allocation problem of minimizing the total...
Saved in:
Published in | IEEE transactions on communications Vol. 71; no. 1; p. 1 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Resource allocation for mobile edge computing (MEC) in unmanned aerial vehicle (UAV) networks has been a popular research issue. Different from existing works, this paper considers a multi-UAV-aided uplink communication scenario and investigates a resource allocation problem of minimizing the total system latency and the energy consumption, subject to constraints on transmit power of mobile users (MUs), system latency caused by transmission and computation. The problem is confirmed to be a challenging time-series mixed-integer non-convex programming problem, and we propose a joint UAV Movement control, MU Association and MU Power control (UMAP) algorithm to solve it effectively, where three sub-problems are optimized iteratively. Specifically, UAV movement and MU association are optimized utilizing deep reinforcement learning (DRL) to decrease the energy consumption and system latency. Next, a closed-form solution of the MU transmit power is derived. Finally, simulation results show that the UMAP algorithm can significantly decrease the system latency and energy consumption and increase the coverage rate compared with benchmark algorithms. |
---|---|
AbstractList | Resource allocation for mobile edge computing (MEC) in unmanned aerial vehicle (UAV) networks has been a popular research issue. Different from existing works, this paper considers a multi-UAV-aided uplink communication scenario and investigates a resource allocation problem of minimizing the total system latency and the energy consumption, subject to constraints on transmit power of mobile users (MUs), system latency caused by transmission and computation. The problem is confirmed to be a challenging time-series mixed-integer non-convex programming problem, and we propose a joint UAV Movement control, MU Association and MU Power control (UMAP) algorithm to solve it effectively, where three sub-problems are optimized iteratively. Specifically, UAV movement and MU association are optimized utilizing deep reinforcement learning (DRL) to decrease the energy consumption and system latency. Next, a closed-form solution of the MU transmit power is derived. Finally, simulation results show that the UMAP algorithm can significantly decrease the system latency and energy consumption and increase the coverage rate compared with benchmark algorithms. |
Author | Yang, Peng Cao, Xianbin Xiao, Meng Ren, Siqiao Chen, Jingxuan Wu, Dapeng Oliver Zhao, Zhongliang |
Author_xml | – sequence: 1 givenname: Jingxuan orcidid: 0000-0002-0376-6496 surname: Chen fullname: Chen, Jingxuan organization: School of Electronic and Information Engineering, Beihang University, Beijing, China – sequence: 2 givenname: Xianbin orcidid: 0000-0002-5042-7884 surname: Cao fullname: Cao, Xianbin organization: School of Electronic and Information Engineering, Beihang University, Beijing, China – sequence: 3 givenname: Peng orcidid: 0000-0001-9088-7589 surname: Yang fullname: Yang, Peng organization: School of Electronic and Information Engineering, Beihang University, Beijing, China – sequence: 4 givenname: Meng orcidid: 0000-0002-1308-2100 surname: Xiao fullname: Xiao, Meng organization: School of Electronic and Information Engineering, Beihang University, Beijing, China – sequence: 5 givenname: Siqiao surname: Ren fullname: Ren, Siqiao organization: School of Electronic and Information Engineering, Beihang University, Beijing, China – sequence: 6 givenname: Zhongliang orcidid: 0000-0002-0979-9272 surname: Zhao fullname: Zhao, Zhongliang organization: School of Electronic and Information Engineering, Beihang University, Beijing, China – sequence: 7 givenname: Dapeng Oliver orcidid: 0000-0003-1755-0183 surname: Wu fullname: Wu, Dapeng Oliver organization: Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong, China |
BookMark | eNp9kElPwzAQhS0EEm3hD8AlEucUL_F2DKEsUkMl1HKNnGSKXFKn2KkQ_550EQcOnObw3ps38w3RqWsdIHRF8JgQrG_n2SzPxxRTOmaUCqLZCRoQzlWMFZenaICxxrGQUp2jYQgrjHGCGRugxT3AJnoF65atr2ANroumYLyz7j26MwHqXgzttteitGnaynS2dZF1Ub5tOhsv0rc4tXVvyydZ9ALdV-s_wgU6W5omwOVxjtDiYTLPnuLp7PE5S6dxRTXv4rqsOaWyNJIpkUB_HQOtZVVyIZSRJddUk1pVWhFeKmZYQjERSVkzIFjUho3QzWHvxrefWwhdsepPdX1lQaXgRHKuSe-iB1fl2xA8LIuNt2vjvwuCix2-Yo-v2OErjvj6kPoTqmy3f77zxjb_R68PUQsAv11aC0WZYD-vtn3Q |
CODEN | IECMBT |
CitedBy_id | crossref_primary_10_1109_TIV_2023_3287629 crossref_primary_10_1109_JIOT_2024_3412825 crossref_primary_10_1109_TVT_2024_3430311 crossref_primary_10_1109_JIOT_2024_3426312 crossref_primary_10_1109_TNSE_2024_3350710 crossref_primary_10_4108_eetsis_v10i3_3145 crossref_primary_10_1016_j_adhoc_2023_103371 crossref_primary_10_3390_s24134337 crossref_primary_10_1016_j_iot_2024_101342 crossref_primary_10_1109_TMC_2024_3349551 crossref_primary_10_1007_s10586_024_04631_z crossref_primary_10_1016_j_vehcom_2024_100844 crossref_primary_10_1109_TCOMM_2024_3374356 crossref_primary_10_1109_TWC_2024_3509475 crossref_primary_10_1109_TVT_2024_3389555 crossref_primary_10_1109_TWC_2024_3454073 crossref_primary_10_1109_JIOT_2024_3356725 crossref_primary_10_4108_eetsis_v10i4_3166 crossref_primary_10_3390_electronics13050938 crossref_primary_10_1016_j_comcom_2023_09_008 crossref_primary_10_1109_JSEN_2024_3494028 crossref_primary_10_1016_j_comnet_2024_110906 crossref_primary_10_1016_j_cosrev_2023_100615 crossref_primary_10_1016_j_cosrev_2025_100734 crossref_primary_10_1109_TVT_2024_3379298 crossref_primary_10_1109_TIM_2024_3421433 crossref_primary_10_1016_j_adhoc_2025_103757 crossref_primary_10_1109_ACCESS_2024_3418900 crossref_primary_10_1109_TIM_2025_3547479 crossref_primary_10_1109_TMC_2023_3320104 crossref_primary_10_1155_2024_6980514 crossref_primary_10_1109_ACCESS_2024_3378512 crossref_primary_10_1109_JSEN_2024_3378844 crossref_primary_10_1109_TCOMM_2024_3361536 crossref_primary_10_1109_TWC_2023_3299650 crossref_primary_10_1016_j_cosrev_2024_100668 crossref_primary_10_1093_ijlct_ctae092 crossref_primary_10_1109_TNSM_2024_3441231 crossref_primary_10_1109_TVT_2024_3372292 crossref_primary_10_1016_j_comcom_2023_11_006 crossref_primary_10_1109_TWC_2024_3387980 crossref_primary_10_1109_TCOMM_2023_3307559 crossref_primary_10_3390_s24144608 crossref_primary_10_3390_app13042625 crossref_primary_10_1109_JIOT_2024_3480248 crossref_primary_10_1109_ACCESS_2024_3356558 crossref_primary_10_1109_JSEN_2024_3370924 crossref_primary_10_3390_drones7050284 crossref_primary_10_1109_TWC_2024_3464610 crossref_primary_10_1145_3604933 crossref_primary_10_1007_s11227_024_06314_3 crossref_primary_10_1016_j_adhoc_2024_103635 crossref_primary_10_1109_TWC_2024_3362375 crossref_primary_10_1109_TMC_2024_3432491 crossref_primary_10_1016_j_comnet_2024_110615 crossref_primary_10_1109_TMC_2024_3366944 |
Cites_doi | 10.1109/TCCN.2020.3027695 10.1109/TVT.2019.2913988 10.1109/TNSM.2021.3123216 10.1109/TVT.2017.2706308 10.1109/CVPR42600.2020.00941 10.1109/JIOT.2021.3063188 10.1109/TCOMM.2019.2895831 10.1109/JIOT.2017.2777820 10.1109/TVT.2018.2869144 10.1109/JIOT.2020.2965898 10.1109/JIOT.2020.2971645 10.1109/MNET.011.2000440 10.1109/LWC.2020.3042189 10.1109/ICOIN50884.2021.9333960 10.1109/JIOT.2018.2875493 10.1109/TNSM.2021.3096673 10.1109/TVT.2022.3141799 10.1109/LWC.2021.3068793 10.1109/TCOMM.2021.3049387 10.1109/TMC.2019.2928811 10.1109/ACCESS.2021.3055335 10.1109/TWC.2019.2928539 10.1109/IWCMC.2019.8766458 10.1109/TVT.2019.2935877 10.1109/COMST.2021.3063822 10.1109/COMST.2020.2986024 10.1109/MWC.010.2000528 10.1109/TCOMM.2019.2949994 10.1109/JSAC.2017.2760160 10.1109/TWC.2020.3035153 10.1109/JSAC.2020.3000416 10.1016/j.phycom.2021.101283 10.1109/TWC.2018.2821664 10.1109/TPDS.2018.2832124 10.1109/ICMLA.2011.159 10.1109/ICCW.2015.7247564 10.1109/TWC.2017.2785305 10.1109/PIMRCW.2019.8880836 10.1109/ICC.2016.7510820 10.1109/WCNC49053.2021.9417458 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TCOMM.2022.3226193 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0857 |
EndPage | 1 |
ExternalDocumentID | 10_1109_TCOMM_2022_3226193 9968236 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61827901; 91738301 funderid: 10.13039/501100001809 – fundername: Beihang University grantid: KG21005501; KZ37102901 funderid: 10.13039/501100002358 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IES IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 ZCA ZCG AAYOK AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c295t-dbd5227ba73864e7783e997cb5668a7b59291d8c9815b83a3420164bd3e106da3 |
IEDL.DBID | RIE |
ISSN | 0090-6778 |
IngestDate | Mon Jun 30 10:11:55 EDT 2025 Thu Apr 24 23:03:48 EDT 2025 Tue Jul 01 02:51:38 EDT 2025 Wed Aug 27 02:29:12 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-dbd5227ba73864e7783e997cb5668a7b59291d8c9815b83a3420164bd3e106da3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0979-9272 0000-0002-5042-7884 0000-0001-9088-7589 0000-0002-0376-6496 0000-0003-1755-0183 0000-0002-1308-2100 0000-0001-8863-9535 |
PQID | 2765175591 |
PQPubID | 85472 |
PageCount | 1 |
ParticipantIDs | crossref_primary_10_1109_TCOMM_2022_3226193 proquest_journals_2765175591 crossref_citationtrail_10_1109_TCOMM_2022_3226193 ieee_primary_9968236 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on communications |
PublicationTitleAbbrev | TCOMM |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref1 ref17 ref39 ref16 ref38 ref19 ref18 (ref2) 2015 ref24 ref23 ref26 ref25 ref20 ref41 ref22 ref21 Laurila (ref42) ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref33 doi: 10.1109/TCCN.2020.3027695 – ident: ref30 doi: 10.1109/TVT.2019.2913988 – ident: ref14 doi: 10.1109/TNSM.2021.3123216 – volume-title: IMT Vision–Framework and Overall Objectives of the Future Development of IMT for 2020 and Beyond year: 2015 ident: ref2 – ident: ref3 doi: 10.1109/TVT.2017.2706308 – ident: ref35 doi: 10.1109/CVPR42600.2020.00941 – ident: ref16 doi: 10.1109/JIOT.2021.3063188 – ident: ref26 doi: 10.1109/TCOMM.2019.2895831 – ident: ref1 doi: 10.1109/JIOT.2017.2777820 – ident: ref8 doi: 10.1109/TVT.2018.2869144 – ident: ref24 doi: 10.1109/JIOT.2020.2965898 – ident: ref32 doi: 10.1109/JIOT.2020.2971645 – ident: ref13 doi: 10.1109/MNET.011.2000440 – start-page: 1 volume-title: Proc. Mobile Data Challenge by Nokia Workshop, Conjunction With Int. Conf. Pervasive Comput ident: ref42 article-title: The mobile data challenge: Big data for mobile computing research – ident: ref6 doi: 10.1109/LWC.2020.3042189 – ident: ref20 doi: 10.1109/ICOIN50884.2021.9333960 – ident: ref28 doi: 10.1109/JIOT.2018.2875493 – ident: ref37 doi: 10.1109/TNSM.2021.3096673 – ident: ref31 doi: 10.1109/TVT.2022.3141799 – ident: ref18 doi: 10.1109/LWC.2021.3068793 – ident: ref19 doi: 10.1109/TCOMM.2021.3049387 – ident: ref10 doi: 10.1109/TMC.2019.2928811 – ident: ref15 doi: 10.1109/ACCESS.2021.3055335 – ident: ref23 doi: 10.1109/TWC.2019.2928539 – ident: ref17 doi: 10.1109/IWCMC.2019.8766458 – ident: ref25 doi: 10.1109/TVT.2019.2935877 – ident: ref41 doi: 10.1109/COMST.2021.3063822 – ident: ref12 doi: 10.1109/COMST.2020.2986024 – ident: ref22 doi: 10.1109/MWC.010.2000528 – ident: ref5 doi: 10.1109/TCOMM.2019.2949994 – ident: ref7 doi: 10.1109/JSAC.2017.2760160 – ident: ref9 doi: 10.1109/TWC.2020.3035153 – ident: ref29 doi: 10.1109/JSAC.2020.3000416 – ident: ref40 doi: 10.1016/j.phycom.2021.101283 – ident: ref34 doi: 10.1109/TWC.2018.2821664 – ident: ref38 doi: 10.1109/TPDS.2018.2832124 – ident: ref39 doi: 10.1109/ICMLA.2011.159 – ident: ref4 doi: 10.1109/ICCW.2015.7247564 – ident: ref11 doi: 10.1109/TWC.2017.2785305 – ident: ref36 doi: 10.1109/PIMRCW.2019.8880836 – ident: ref21 doi: 10.1109/ICC.2016.7510820 – ident: ref27 doi: 10.1109/WCNC49053.2021.9417458 |
SSID | ssj0004033 |
Score | 2.620375 |
Snippet | Resource allocation for mobile edge computing (MEC) in unmanned aerial vehicle (UAV) networks has been a popular research issue. Different from existing works,... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Algorithms Computational geometry Convexity Deep learning DRL Edge computing Energy consumption Machine learning Mathematical programming MEC Mixed integer Mobile computing movement control Network latency Power control Resource allocation Series (mathematics) UAV Unmanned aerial vehicles |
Title | Deep Reinforcement Learning Based Resource Allocation in Multi-UAV-Aided MEC Networks |
URI | https://ieeexplore.ieee.org/document/9968236 https://www.proquest.com/docview/2765175591 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG6Akx58oRFF04M3XdjtvtojIoSYLCYGDLdNX2uIBIjAxV_vtLuLRI3x1sM0aWa6O99MZ75B6IZIygF2KyfzNHeCLJQOE7AiPOYx1SRjdiRLMowG4-BxEk4q6G7bC6O1tsVnumWW9i1fLeTGpMragM3NfO4qqkLglvdqffVAun7BOGnK2WNaNsi4rD3qPiUJhIKEtOD6RvaReccJ2akqP37F1r_0D1FSniwvK3lrbdaiJT--kTb-9-hH6KAAmriT34xjVNHzE7S_Qz9YR-MHrZf4WVvyVGnzhLjgW33F9-DeFC6z-7gzM17PWBFP59i27TrjzovTmSoQS3pdPMwLylenaNzvjboDpxiz4EjCwrWjhAIQFgtu5n8GGnTna8ZiKQDpUR6LEBCUp6hk1AsF9bkfEMPLJZSvIZ5U3D9Dtflirs9NnVQMcDBQlEdRIKXLFURXWeSqzFVKUtJAXqn3VBYc5GYUxiy1sYjLUmur1NgqLWzVQLfbPcucgeNP6bpR_lay0HsDNUvzpsVHukpJHIWAnkLmXfy-6xLtmenyecaliWrr942-AgyyFtf28n0C-ybWTg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZ4HIADb8R45sANOtr0lRzHAI1Hh4Q2xK3Kq2gCDQTbhV-Pk7YDAULccnCkyE7rz479GeCAKiYQdmuvCIzwoiJWHpe4oiIVKTO04G4kS9ZNOv3o8j6-n4KjSS-MMcYVn5mmXbq3fP2sxjZVdozY3M7nnoZZ9PtxUHZrfXZB-mHFOWkL2lNWt8j4_LjXvskyDAYpbeIFTtwz8xc35Oaq_PgZOw9zvgRZfbaysOSxOR7Jpnr_Rtv438Mvw2IFNUmrvBsrMGWGq7DwhYBwDfqnxryQW-PoU5XLFJKKcfWBnKCD06TO75PWk_V71o5kMCSucdfrt-681kCjWHbWJt2ypPxtHfrnZ712x6sGLXiK8njkaakRhqVS2AmgkUHdhYbzVEnEekykMkYMFWimOAtiyUIRRtQyc0kdGowotQg3YGb4PDSbtlIqRUAYaSaSJFLKFxrjqyLxdeFrrRhtQFDrPVcVC7kdhvGUu2jE57mzVW5tlVe2asDhZM9LycHxp_SaVf5EstJ7A3Zq8-bVZ_qW0zSJET_FPNj6fdc-zHV62XV-fdG92oZ5O2u-zL_swMzodWx2EZGM5J67iB9W09mX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Reinforcement+Learning+Based+Resource+Allocation+in+Multi-UAV-Aided+MEC+Networks&rft.jtitle=IEEE+transactions+on+communications&rft.au=Chen%2C+Jingxuan&rft.au=Cao%2C+Xianbin&rft.au=Yang%2C+Peng&rft.au=Xiao%2C+Meng&rft.date=2023-01-01&rft.pub=IEEE&rft.issn=0090-6778&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTCOMM.2022.3226193&rft.externalDocID=9968236 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6778&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6778&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6778&client=summon |