Deep Reinforcement Learning Based Resource Allocation in Multi-UAV-Aided MEC Networks

Resource allocation for mobile edge computing (MEC) in unmanned aerial vehicle (UAV) networks has been a popular research issue. Different from existing works, this paper considers a multi-UAV-aided uplink communication scenario and investigates a resource allocation problem of minimizing the total...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on communications Vol. 71; no. 1; p. 1
Main Authors Chen, Jingxuan, Cao, Xianbin, Yang, Peng, Xiao, Meng, Ren, Siqiao, Zhao, Zhongliang, Wu, Dapeng Oliver
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Resource allocation for mobile edge computing (MEC) in unmanned aerial vehicle (UAV) networks has been a popular research issue. Different from existing works, this paper considers a multi-UAV-aided uplink communication scenario and investigates a resource allocation problem of minimizing the total system latency and the energy consumption, subject to constraints on transmit power of mobile users (MUs), system latency caused by transmission and computation. The problem is confirmed to be a challenging time-series mixed-integer non-convex programming problem, and we propose a joint UAV Movement control, MU Association and MU Power control (UMAP) algorithm to solve it effectively, where three sub-problems are optimized iteratively. Specifically, UAV movement and MU association are optimized utilizing deep reinforcement learning (DRL) to decrease the energy consumption and system latency. Next, a closed-form solution of the MU transmit power is derived. Finally, simulation results show that the UMAP algorithm can significantly decrease the system latency and energy consumption and increase the coverage rate compared with benchmark algorithms.
AbstractList Resource allocation for mobile edge computing (MEC) in unmanned aerial vehicle (UAV) networks has been a popular research issue. Different from existing works, this paper considers a multi-UAV-aided uplink communication scenario and investigates a resource allocation problem of minimizing the total system latency and the energy consumption, subject to constraints on transmit power of mobile users (MUs), system latency caused by transmission and computation. The problem is confirmed to be a challenging time-series mixed-integer non-convex programming problem, and we propose a joint UAV Movement control, MU Association and MU Power control (UMAP) algorithm to solve it effectively, where three sub-problems are optimized iteratively. Specifically, UAV movement and MU association are optimized utilizing deep reinforcement learning (DRL) to decrease the energy consumption and system latency. Next, a closed-form solution of the MU transmit power is derived. Finally, simulation results show that the UMAP algorithm can significantly decrease the system latency and energy consumption and increase the coverage rate compared with benchmark algorithms.
Author Yang, Peng
Cao, Xianbin
Xiao, Meng
Ren, Siqiao
Chen, Jingxuan
Wu, Dapeng Oliver
Zhao, Zhongliang
Author_xml – sequence: 1
  givenname: Jingxuan
  orcidid: 0000-0002-0376-6496
  surname: Chen
  fullname: Chen, Jingxuan
  organization: School of Electronic and Information Engineering, Beihang University, Beijing, China
– sequence: 2
  givenname: Xianbin
  orcidid: 0000-0002-5042-7884
  surname: Cao
  fullname: Cao, Xianbin
  organization: School of Electronic and Information Engineering, Beihang University, Beijing, China
– sequence: 3
  givenname: Peng
  orcidid: 0000-0001-9088-7589
  surname: Yang
  fullname: Yang, Peng
  organization: School of Electronic and Information Engineering, Beihang University, Beijing, China
– sequence: 4
  givenname: Meng
  orcidid: 0000-0002-1308-2100
  surname: Xiao
  fullname: Xiao, Meng
  organization: School of Electronic and Information Engineering, Beihang University, Beijing, China
– sequence: 5
  givenname: Siqiao
  surname: Ren
  fullname: Ren, Siqiao
  organization: School of Electronic and Information Engineering, Beihang University, Beijing, China
– sequence: 6
  givenname: Zhongliang
  orcidid: 0000-0002-0979-9272
  surname: Zhao
  fullname: Zhao, Zhongliang
  organization: School of Electronic and Information Engineering, Beihang University, Beijing, China
– sequence: 7
  givenname: Dapeng Oliver
  orcidid: 0000-0003-1755-0183
  surname: Wu
  fullname: Wu, Dapeng Oliver
  organization: Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong, China
BookMark eNp9kElPwzAQhS0EEm3hD8AlEucUL_F2DKEsUkMl1HKNnGSKXFKn2KkQ_550EQcOnObw3ps38w3RqWsdIHRF8JgQrG_n2SzPxxRTOmaUCqLZCRoQzlWMFZenaICxxrGQUp2jYQgrjHGCGRugxT3AJnoF65atr2ANroumYLyz7j26MwHqXgzttteitGnaynS2dZF1Ub5tOhsv0rc4tXVvyydZ9ALdV-s_wgU6W5omwOVxjtDiYTLPnuLp7PE5S6dxRTXv4rqsOaWyNJIpkUB_HQOtZVVyIZSRJddUk1pVWhFeKmZYQjERSVkzIFjUho3QzWHvxrefWwhdsepPdX1lQaXgRHKuSe-iB1fl2xA8LIuNt2vjvwuCix2-Yo-v2OErjvj6kPoTqmy3f77zxjb_R68PUQsAv11aC0WZYD-vtn3Q
CODEN IECMBT
CitedBy_id crossref_primary_10_1109_TIV_2023_3287629
crossref_primary_10_1109_JIOT_2024_3412825
crossref_primary_10_1109_TVT_2024_3430311
crossref_primary_10_1109_JIOT_2024_3426312
crossref_primary_10_1109_TNSE_2024_3350710
crossref_primary_10_4108_eetsis_v10i3_3145
crossref_primary_10_1016_j_adhoc_2023_103371
crossref_primary_10_3390_s24134337
crossref_primary_10_1016_j_iot_2024_101342
crossref_primary_10_1109_TMC_2024_3349551
crossref_primary_10_1007_s10586_024_04631_z
crossref_primary_10_1016_j_vehcom_2024_100844
crossref_primary_10_1109_TCOMM_2024_3374356
crossref_primary_10_1109_TWC_2024_3509475
crossref_primary_10_1109_TVT_2024_3389555
crossref_primary_10_1109_TWC_2024_3454073
crossref_primary_10_1109_JIOT_2024_3356725
crossref_primary_10_4108_eetsis_v10i4_3166
crossref_primary_10_3390_electronics13050938
crossref_primary_10_1016_j_comcom_2023_09_008
crossref_primary_10_1109_JSEN_2024_3494028
crossref_primary_10_1016_j_comnet_2024_110906
crossref_primary_10_1016_j_cosrev_2023_100615
crossref_primary_10_1016_j_cosrev_2025_100734
crossref_primary_10_1109_TVT_2024_3379298
crossref_primary_10_1109_TIM_2024_3421433
crossref_primary_10_1016_j_adhoc_2025_103757
crossref_primary_10_1109_ACCESS_2024_3418900
crossref_primary_10_1109_TIM_2025_3547479
crossref_primary_10_1109_TMC_2023_3320104
crossref_primary_10_1155_2024_6980514
crossref_primary_10_1109_ACCESS_2024_3378512
crossref_primary_10_1109_JSEN_2024_3378844
crossref_primary_10_1109_TCOMM_2024_3361536
crossref_primary_10_1109_TWC_2023_3299650
crossref_primary_10_1016_j_cosrev_2024_100668
crossref_primary_10_1093_ijlct_ctae092
crossref_primary_10_1109_TNSM_2024_3441231
crossref_primary_10_1109_TVT_2024_3372292
crossref_primary_10_1016_j_comcom_2023_11_006
crossref_primary_10_1109_TWC_2024_3387980
crossref_primary_10_1109_TCOMM_2023_3307559
crossref_primary_10_3390_s24144608
crossref_primary_10_3390_app13042625
crossref_primary_10_1109_JIOT_2024_3480248
crossref_primary_10_1109_ACCESS_2024_3356558
crossref_primary_10_1109_JSEN_2024_3370924
crossref_primary_10_3390_drones7050284
crossref_primary_10_1109_TWC_2024_3464610
crossref_primary_10_1145_3604933
crossref_primary_10_1007_s11227_024_06314_3
crossref_primary_10_1016_j_adhoc_2024_103635
crossref_primary_10_1109_TWC_2024_3362375
crossref_primary_10_1109_TMC_2024_3432491
crossref_primary_10_1016_j_comnet_2024_110615
crossref_primary_10_1109_TMC_2024_3366944
Cites_doi 10.1109/TCCN.2020.3027695
10.1109/TVT.2019.2913988
10.1109/TNSM.2021.3123216
10.1109/TVT.2017.2706308
10.1109/CVPR42600.2020.00941
10.1109/JIOT.2021.3063188
10.1109/TCOMM.2019.2895831
10.1109/JIOT.2017.2777820
10.1109/TVT.2018.2869144
10.1109/JIOT.2020.2965898
10.1109/JIOT.2020.2971645
10.1109/MNET.011.2000440
10.1109/LWC.2020.3042189
10.1109/ICOIN50884.2021.9333960
10.1109/JIOT.2018.2875493
10.1109/TNSM.2021.3096673
10.1109/TVT.2022.3141799
10.1109/LWC.2021.3068793
10.1109/TCOMM.2021.3049387
10.1109/TMC.2019.2928811
10.1109/ACCESS.2021.3055335
10.1109/TWC.2019.2928539
10.1109/IWCMC.2019.8766458
10.1109/TVT.2019.2935877
10.1109/COMST.2021.3063822
10.1109/COMST.2020.2986024
10.1109/MWC.010.2000528
10.1109/TCOMM.2019.2949994
10.1109/JSAC.2017.2760160
10.1109/TWC.2020.3035153
10.1109/JSAC.2020.3000416
10.1016/j.phycom.2021.101283
10.1109/TWC.2018.2821664
10.1109/TPDS.2018.2832124
10.1109/ICMLA.2011.159
10.1109/ICCW.2015.7247564
10.1109/TWC.2017.2785305
10.1109/PIMRCW.2019.8880836
10.1109/ICC.2016.7510820
10.1109/WCNC49053.2021.9417458
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TCOMM.2022.3226193
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0857
EndPage 1
ExternalDocumentID 10_1109_TCOMM_2022_3226193
9968236
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61827901; 91738301
  funderid: 10.13039/501100001809
– fundername: Beihang University
  grantid: KG21005501; KZ37102901
  funderid: 10.13039/501100002358
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
ZCA
ZCG
AAYOK
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c295t-dbd5227ba73864e7783e997cb5668a7b59291d8c9815b83a3420164bd3e106da3
IEDL.DBID RIE
ISSN 0090-6778
IngestDate Mon Jun 30 10:11:55 EDT 2025
Thu Apr 24 23:03:48 EDT 2025
Tue Jul 01 02:51:38 EDT 2025
Wed Aug 27 02:29:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-dbd5227ba73864e7783e997cb5668a7b59291d8c9815b83a3420164bd3e106da3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0979-9272
0000-0002-5042-7884
0000-0001-9088-7589
0000-0002-0376-6496
0000-0003-1755-0183
0000-0002-1308-2100
0000-0001-8863-9535
PQID 2765175591
PQPubID 85472
PageCount 1
ParticipantIDs crossref_primary_10_1109_TCOMM_2022_3226193
proquest_journals_2765175591
crossref_citationtrail_10_1109_TCOMM_2022_3226193
ieee_primary_9968236
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on communications
PublicationTitleAbbrev TCOMM
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref1
ref17
ref39
ref16
ref38
ref19
ref18
(ref2) 2015
ref24
ref23
ref26
ref25
ref20
ref41
ref22
ref21
Laurila (ref42)
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref33
  doi: 10.1109/TCCN.2020.3027695
– ident: ref30
  doi: 10.1109/TVT.2019.2913988
– ident: ref14
  doi: 10.1109/TNSM.2021.3123216
– volume-title: IMT Vision–Framework and Overall Objectives of the Future Development of IMT for 2020 and Beyond
  year: 2015
  ident: ref2
– ident: ref3
  doi: 10.1109/TVT.2017.2706308
– ident: ref35
  doi: 10.1109/CVPR42600.2020.00941
– ident: ref16
  doi: 10.1109/JIOT.2021.3063188
– ident: ref26
  doi: 10.1109/TCOMM.2019.2895831
– ident: ref1
  doi: 10.1109/JIOT.2017.2777820
– ident: ref8
  doi: 10.1109/TVT.2018.2869144
– ident: ref24
  doi: 10.1109/JIOT.2020.2965898
– ident: ref32
  doi: 10.1109/JIOT.2020.2971645
– ident: ref13
  doi: 10.1109/MNET.011.2000440
– start-page: 1
  volume-title: Proc. Mobile Data Challenge by Nokia Workshop, Conjunction With Int. Conf. Pervasive Comput
  ident: ref42
  article-title: The mobile data challenge: Big data for mobile computing research
– ident: ref6
  doi: 10.1109/LWC.2020.3042189
– ident: ref20
  doi: 10.1109/ICOIN50884.2021.9333960
– ident: ref28
  doi: 10.1109/JIOT.2018.2875493
– ident: ref37
  doi: 10.1109/TNSM.2021.3096673
– ident: ref31
  doi: 10.1109/TVT.2022.3141799
– ident: ref18
  doi: 10.1109/LWC.2021.3068793
– ident: ref19
  doi: 10.1109/TCOMM.2021.3049387
– ident: ref10
  doi: 10.1109/TMC.2019.2928811
– ident: ref15
  doi: 10.1109/ACCESS.2021.3055335
– ident: ref23
  doi: 10.1109/TWC.2019.2928539
– ident: ref17
  doi: 10.1109/IWCMC.2019.8766458
– ident: ref25
  doi: 10.1109/TVT.2019.2935877
– ident: ref41
  doi: 10.1109/COMST.2021.3063822
– ident: ref12
  doi: 10.1109/COMST.2020.2986024
– ident: ref22
  doi: 10.1109/MWC.010.2000528
– ident: ref5
  doi: 10.1109/TCOMM.2019.2949994
– ident: ref7
  doi: 10.1109/JSAC.2017.2760160
– ident: ref9
  doi: 10.1109/TWC.2020.3035153
– ident: ref29
  doi: 10.1109/JSAC.2020.3000416
– ident: ref40
  doi: 10.1016/j.phycom.2021.101283
– ident: ref34
  doi: 10.1109/TWC.2018.2821664
– ident: ref38
  doi: 10.1109/TPDS.2018.2832124
– ident: ref39
  doi: 10.1109/ICMLA.2011.159
– ident: ref4
  doi: 10.1109/ICCW.2015.7247564
– ident: ref11
  doi: 10.1109/TWC.2017.2785305
– ident: ref36
  doi: 10.1109/PIMRCW.2019.8880836
– ident: ref21
  doi: 10.1109/ICC.2016.7510820
– ident: ref27
  doi: 10.1109/WCNC49053.2021.9417458
SSID ssj0004033
Score 2.620375
Snippet Resource allocation for mobile edge computing (MEC) in unmanned aerial vehicle (UAV) networks has been a popular research issue. Different from existing works,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Computational geometry
Convexity
Deep learning
DRL
Edge computing
Energy consumption
Machine learning
Mathematical programming
MEC
Mixed integer
Mobile computing
movement control
Network latency
Power control
Resource allocation
Series (mathematics)
UAV
Unmanned aerial vehicles
Title Deep Reinforcement Learning Based Resource Allocation in Multi-UAV-Aided MEC Networks
URI https://ieeexplore.ieee.org/document/9968236
https://www.proquest.com/docview/2765175591
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG6Akx58oRFF04M3XdjtvtojIoSYLCYGDLdNX2uIBIjAxV_vtLuLRI3x1sM0aWa6O99MZ75B6IZIygF2KyfzNHeCLJQOE7AiPOYx1SRjdiRLMowG4-BxEk4q6G7bC6O1tsVnumWW9i1fLeTGpMragM3NfO4qqkLglvdqffVAun7BOGnK2WNaNsi4rD3qPiUJhIKEtOD6RvaReccJ2akqP37F1r_0D1FSniwvK3lrbdaiJT--kTb-9-hH6KAAmriT34xjVNHzE7S_Qz9YR-MHrZf4WVvyVGnzhLjgW33F9-DeFC6z-7gzM17PWBFP59i27TrjzovTmSoQS3pdPMwLylenaNzvjboDpxiz4EjCwrWjhAIQFgtu5n8GGnTna8ZiKQDpUR6LEBCUp6hk1AsF9bkfEMPLJZSvIZ5U3D9Dtflirs9NnVQMcDBQlEdRIKXLFURXWeSqzFVKUtJAXqn3VBYc5GYUxiy1sYjLUmur1NgqLWzVQLfbPcucgeNP6bpR_lay0HsDNUvzpsVHukpJHIWAnkLmXfy-6xLtmenyecaliWrr942-AgyyFtf28n0C-ybWTg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZ4HIADb8R45sANOtr0lRzHAI1Hh4Q2xK3Kq2gCDQTbhV-Pk7YDAULccnCkyE7rz479GeCAKiYQdmuvCIzwoiJWHpe4oiIVKTO04G4kS9ZNOv3o8j6-n4KjSS-MMcYVn5mmXbq3fP2sxjZVdozY3M7nnoZZ9PtxUHZrfXZB-mHFOWkL2lNWt8j4_LjXvskyDAYpbeIFTtwz8xc35Oaq_PgZOw9zvgRZfbaysOSxOR7Jpnr_Rtv438Mvw2IFNUmrvBsrMGWGq7DwhYBwDfqnxryQW-PoU5XLFJKKcfWBnKCD06TO75PWk_V71o5kMCSucdfrt-681kCjWHbWJt2ypPxtHfrnZ712x6sGLXiK8njkaakRhqVS2AmgkUHdhYbzVEnEekykMkYMFWimOAtiyUIRRtQyc0kdGowotQg3YGb4PDSbtlIqRUAYaSaSJFLKFxrjqyLxdeFrrRhtQFDrPVcVC7kdhvGUu2jE57mzVW5tlVe2asDhZM9LycHxp_SaVf5EstJ7A3Zq8-bVZ_qW0zSJET_FPNj6fdc-zHV62XV-fdG92oZ5O2u-zL_swMzodWx2EZGM5J67iB9W09mX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Reinforcement+Learning+Based+Resource+Allocation+in+Multi-UAV-Aided+MEC+Networks&rft.jtitle=IEEE+transactions+on+communications&rft.au=Chen%2C+Jingxuan&rft.au=Cao%2C+Xianbin&rft.au=Yang%2C+Peng&rft.au=Xiao%2C+Meng&rft.date=2023-01-01&rft.pub=IEEE&rft.issn=0090-6778&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTCOMM.2022.3226193&rft.externalDocID=9968236
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6778&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6778&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6778&client=summon