Deep Reinforcement Learning Based Resource Allocation in Multi-UAV-Aided MEC Networks

Resource allocation for mobile edge computing (MEC) in unmanned aerial vehicle (UAV) networks has been a popular research issue. Different from existing works, this paper considers a multi-UAV-aided uplink communication scenario and investigates a resource allocation problem of minimizing the total...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on communications Vol. 71; no. 1; p. 1
Main Authors Chen, Jingxuan, Cao, Xianbin, Yang, Peng, Xiao, Meng, Ren, Siqiao, Zhao, Zhongliang, Wu, Dapeng Oliver
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Resource allocation for mobile edge computing (MEC) in unmanned aerial vehicle (UAV) networks has been a popular research issue. Different from existing works, this paper considers a multi-UAV-aided uplink communication scenario and investigates a resource allocation problem of minimizing the total system latency and the energy consumption, subject to constraints on transmit power of mobile users (MUs), system latency caused by transmission and computation. The problem is confirmed to be a challenging time-series mixed-integer non-convex programming problem, and we propose a joint UAV Movement control, MU Association and MU Power control (UMAP) algorithm to solve it effectively, where three sub-problems are optimized iteratively. Specifically, UAV movement and MU association are optimized utilizing deep reinforcement learning (DRL) to decrease the energy consumption and system latency. Next, a closed-form solution of the MU transmit power is derived. Finally, simulation results show that the UMAP algorithm can significantly decrease the system latency and energy consumption and increase the coverage rate compared with benchmark algorithms.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0090-6778
1558-0857
DOI:10.1109/TCOMM.2022.3226193