Experimental Validation on Connected Cruise Control With Flexible Connectivity Topologies
In this paper, we investigate experimentally the impact of connected automated vehicles on the dynamics of vehicle chains with different connectivity topologies. We utilize a scaled connected vehicle testbed consisting of ground robots that can mimic the dynamics of human-driven and connected automa...
Saved in:
Published in | IEEE/ASME transactions on mechatronics Vol. 24; no. 6; pp. 2791 - 2802 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.12.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1083-4435 1941-014X |
DOI | 10.1109/TMECH.2019.2943501 |
Cover
Loading…
Summary: | In this paper, we investigate experimentally the impact of connected automated vehicles on the dynamics of vehicle chains with different connectivity topologies. We utilize a scaled connected vehicle testbed consisting of ground robots that can mimic the dynamics of human-driven and connected automated vehicles. We derive analytical conditions for stability and disturbance attenuation (i.e., string stability) while taking into account digital effects and delays and validate the corresponding stability diagrams experimentally. The flexibility and robustness of vehicle-to-everything (V2X) based longitudinal control among human-driven vehicles is evaluated for different connectivity topologies and the impacts of connected automated vehicles on traffic flow are highlighted. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1083-4435 1941-014X |
DOI: | 10.1109/TMECH.2019.2943501 |