Analysis and Mitigation of Clipping Noise in Layered ACO-OFDM Based Visible Light Communication Systems

Due to the limited dynamic range of the off-the-shelf electrical and optical components, deliberate digital clipping (DDC) is widely applied to optical orthogonal frequency division multiplexing (OFDM) based visible light communication systems. In this paper, we present a theoretical characterizatio...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on communications Vol. 67; no. 1; pp. 564 - 577
Main Authors Wang, Thomas Q., Li, Hang, Huang, Xiaojing
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Due to the limited dynamic range of the off-the-shelf electrical and optical components, deliberate digital clipping (DDC) is widely applied to optical orthogonal frequency division multiplexing (OFDM) based visible light communication systems. In this paper, we present a theoretical characterization of the layered asymmetrically clipped optical OFDM (ACO-OFDM) signals subject to peak clipping. We decouple a clipped <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula>-layer ACO-OFDM symbol to <inline-formula> <tex-math notation="LaTeX">L </tex-math></inline-formula> single-layer ACO-OFDM symbols, each corresponding to a layer, and show that these symbols are subject to symmetrical peak clippings at random levels. Using Bussgang's theorem, the resulting attenuation factors and variances of the additive noise associated with each layer are derived. It is shown that the clipping noise caused by the DDC mainly falls onto the first layer, and its impact is gradually reduced in the subsequent layers. In order to combat the clipping noise, a novel receiver based on decision aided reconstruction is proposed. Simulation results show that the proposed receiver can effectively mitigate the clipping noise, leading to significant improvement of bit error rates over the conventional receiver.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0090-6778
1558-0857
DOI:10.1109/TCOMM.2018.2868665