Adaptive Control of Hypersonic Flight Vehicles With Limited Angle-of-Attack

This paper designs a high-performance adaptive controller for the uncertain model of hypersonic flight vehicles (HFVs) proceed by faulty and hysteretic actuators. A parameterized HFV model is derived, based on which adaptive tracking controllers for velocity and altitude are designed, sequentially....

Full description

Saved in:
Bibliographic Details
Published inIEEE/ASME transactions on mechatronics Vol. 23; no. 2; pp. 883 - 894
Main Authors Liu, Jianxing, An, Hao, Gao, Yabin, Wang, Changhong, Wu, Ligang
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper designs a high-performance adaptive controller for the uncertain model of hypersonic flight vehicles (HFVs) proceed by faulty and hysteretic actuators. A parameterized HFV model is derived, based on which adaptive tracking controllers for velocity and altitude are designed, sequentially. Compared with other adaptive strategies that mainly focus on the parametric uncertainty and asymptotic tracking, utilization of the prescribed performance control technique can largely improve the transient characteristics of HFVs. A novel handling on angle-of-attack (AOA) is proposed with the help of barrier functions. As a result, the magnitude of AOA is limited to match the requirement of the scramjet. Partial loss of effectiveness (PLOE) of actuators is also taken into account, while the backlash hysteresis in aerodynamic control surfaces is accommodated by an adaptive inverse compensation. Corresponding analysis shows that both the limited AOA and the desired performance can be guaranteed despite PLOE of actuators. A simulation study is provided to verify the effectiveness of the proposed controller.
ISSN:1083-4435
1941-014X
DOI:10.1109/TMECH.2018.2800089