Hierarchical Deep Learning Machine for Power System Online Transient Stability Prediction

This paper develops a hierarchical deep learning machine (HDLM) to efficiently achieve both quantitative and qualitative online transient stability prediction (TSP). For the sake of improving its online efficiency, multiple generators' fault-on trajectories as well as the two closest data-point...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on power systems Vol. 35; no. 3; pp. 2399 - 2411
Main Authors Zhu, Lipeng, Hill, David J., Lu, Chao
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper develops a hierarchical deep learning machine (HDLM) to efficiently achieve both quantitative and qualitative online transient stability prediction (TSP). For the sake of improving its online efficiency, multiple generators' fault-on trajectories as well as the two closest data-points in pre-/post-fault stages are acquired by PMUs to form its raw inputs. An anti-noise graphical transient characterization technique is tactfully designed to transform multiplex trajectories into 2-D images, within which system-wide transients are concisely described. Then, following the divide-and-conquer philosophy, the HDLM trains a two-level convolutional neural network (CNN) based regression model. With stability margin regressions hierarchically refined, it manages to perform reliable and adaptive online TSP almost immediately after fault clearance. Test results on the IEEE 39-bus test system and the real-world Guangdong Power Grid in South China demonstrate the HDLM's superior performances on both stability status and stability margin predictions.
ISSN:0885-8950
1558-0679
DOI:10.1109/TPWRS.2019.2957377