Evaluation of Bioenergy Potential and Relative Impact of Microclimate Conditions for Sustainable Fuel Pellets Production and Carbon Sequestration of Short-Rotation Forestry (Populus × Canadensis Moench.) in Reclaimed Land, South Korea: Three-Year Monitoring

It is important to manage sustainable short-rotation coppices (SRCs), having an important role in carbon sink and bioenergy output, because most of SRCs in South Korea were established on reclaimed land. However, during the last three years, the growth pattern of the SRCs was remarkably changed with...

Full description

Saved in:
Bibliographic Details
Published inSustainability Vol. 12; no. 15; p. 6244
Main Authors Jang, Jihwi, Woo, Su Young, Kwak, Myeong Ja, Je, Sun Mi, Lee, Jong Kyu, Kim, Ie Reh
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:It is important to manage sustainable short-rotation coppices (SRCs), having an important role in carbon sink and bioenergy output, because most of SRCs in South Korea were established on reclaimed land. However, during the last three years, the growth pattern of the SRCs was remarkably changed with soil condition. This study aimed to identify the sustainability of SRCs used for carbon storage, biomass and fuel pellet production, monitoring the neighboring vegetation of SRCs by land-use exchange, examine physiological changes of poplar in a seasonal trend, and to evaluate whether poplar is suitable for making wood pellets over time. The calculated biomass yield per area of poplar grown was 103.07 Mg per total area (55.6 ha), and volumes of carbon dioxide absorption were estimated to be 329.72 Mg CO2. Wood pellet quality based on the criteria scored third grade, indicating that poplar is appropriate to be manufactured as fuel pellets. Moreover, monitoring of the flora distribution in SRCs revealed changes in species composition. As halophyte was increased during drought, soil organic matter, net growth and total chlorophyll of poplar were significantly decreased. These findings indicate that physiological changes and growth pattern of SRCs may be negatively affected by microclimate and provide better understanding for the effective management of SRCs amid environmental changes.
ISSN:2071-1050
2071-1050
DOI:10.3390/su12156244