A General 3-D Non-Stationary 5G Wireless Channel Model
A novel unified framework of geometry-based stochastic models for the fifth generation (5G) wireless communication systems is proposed in this paper. The proposed general 5G channel model aims at capturing small-scale fading channel characteristics of key 5G communication scenarios, such as massive...
Saved in:
Published in | IEEE transactions on communications Vol. 66; no. 7; pp. 3065 - 3078 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.07.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A novel unified framework of geometry-based stochastic models for the fifth generation (5G) wireless communication systems is proposed in this paper. The proposed general 5G channel model aims at capturing small-scale fading channel characteristics of key 5G communication scenarios, such as massive multiple-input multiple-output, high-speed train, vehicle-to-vehicle, and millimeter wave communications. It is a 3-D non-stationary channel model based on the WINNER II and Saleh-Valenzuela channel models considering array-time cluster evolution. Moreover, it can easily be reduced to various simplified channel models by properly adjusting model parameters. Statistical properties of the proposed general 5G small-scale fading channel model are investigated to demonstrate its capability of capturing channel characteristics of various scenarios, with excellent fitting to some corresponding channel measurements. |
---|---|
ISSN: | 0090-6778 1558-0857 |
DOI: | 10.1109/TCOMM.2017.2779128 |