Metal-Based Additive Manufacturing Condition Monitoring: A Review on Machine Learning Based Approaches

The metal-based additive manufacturing (MAM) processes have great potential in wide industrial applications, for their capabilities in building dense metal parts with complex geometry and internal characteristics. However, various defects in the MAM process greatly affect the precision, mechanical p...

Full description

Saved in:
Bibliographic Details
Published inIEEE/ASME transactions on mechatronics Vol. 27; no. 5; pp. 2495 - 2510
Main Authors Zhu, Kunpeng, Fuh, Jerry Ying Hsi, Lin, Xin
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The metal-based additive manufacturing (MAM) processes have great potential in wide industrial applications, for their capabilities in building dense metal parts with complex geometry and internal characteristics. However, various defects in the MAM process greatly affect the precision, mechanical properties and repeatability of final parts. These defects limit its application as a reliable manufacturing process, especially in the aerospace and medical industries where high quality and reliability are essential. MAM process monitoring provides a technical basis for avoiding and eliminating defects to improve the build quality. Based on of the nature of the MAM build defects, this article conducts a thorough investigation of monitoring methods, and proposes a machine learning (ML) framework for process condition monitoring. According to the structure of ML models, they are divided into shallow ML-based and deep learning-based methods. The state-of-the-art ML monitoring approaches, as well as the advantages and disadvantages of their algorithmic implementations, are discussed. Finally, the prospects of ML based process monitoring researches are summarized and advised.
ISSN:1083-4435
1941-014X
DOI:10.1109/TMECH.2021.3110818