A Big Bang–Big Crunch Type-2 Fuzzy Logic System for Machine-Vision-Based Event Detection and Summarization in Real-World Ambient-Assisted Living
The area of ambient-assisted living (AAL) focuses on developing new technologies, which can improve the quality of life and care provided to elderly and disabled people. In this paper, we propose a novel system based on 3-D RGB-D vision sensors and interval type-2 fuzzy-logic-based systems (IT2FLSs)...
Saved in:
Published in | IEEE transactions on fuzzy systems Vol. 24; no. 6; pp. 1307 - 1319 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.12.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The area of ambient-assisted living (AAL) focuses on developing new technologies, which can improve the quality of life and care provided to elderly and disabled people. In this paper, we propose a novel system based on 3-D RGB-D vision sensors and interval type-2 fuzzy-logic-based systems (IT2FLSs) employing the big bang-big crunch algorithm for the real-time automatic detection and summarization of important events and human behaviors from the large-scale data. We will present several real-world experiments, which were conducted for AAL-related behaviors with various users. It will be shown that the proposed BB-BC IT2FLSs outperform the type-1 fuzzy logic system counterparts as well as other conventional nonfuzzy methods, and the performance improves when the number of subjects increases. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1063-6706 1941-0034 |
DOI: | 10.1109/TFUZZ.2016.2514366 |