Drone-Based RGB-Infrared Cross-Modality Vehicle Detection Via Uncertainty-Aware Learning
Drone-based vehicle detection aims at detecting vehicle locations and categories in aerial images. It empowers smart city traffic management and disaster relief. Researchers have made a great deal of effort in this area and achieved considerable progress. However, because of the paucity of data unde...
Saved in:
Published in | IEEE transactions on circuits and systems for video technology Vol. 32; no. 10; pp. 6700 - 6713 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Drone-based vehicle detection aims at detecting vehicle locations and categories in aerial images. It empowers smart city traffic management and disaster relief. Researchers have made a great deal of effort in this area and achieved considerable progress. However, because of the paucity of data under extreme conditions, drone-based vehicle detection remains a challenge when objects are difficult to distinguish, particularly in low-light conditions. To fill this gap, we constructed a large-scale drone-based RGB-infrared vehicle detection dataset called DroneVehicle, which contains 28, 439 RGB-infrared image pairs covering urban roads, residential areas, parking lots, and other scenarios from day to night. Cross-modal images provide complementary information for vehicle detection, but also introduce redundant information. To handle this dilemma, we further propose an uncertainty-aware cross-modality vehicle detection (UA-CMDet) framework to improve detection performance in complex environments. Specifically, we design an uncertainty-aware module using cross-modal intersection over union and illumination estimation to quantify the uncertainty of each object. Our method takes uncertainty as a weight to boost model learning more effectively while reducing bias caused by high-uncertainty objects. For more robust cross-modal integration, we further perform illumination-aware non-maximum suppression during inference. Extensive experiments on our DroneVehicle and two challenging RGB-infrared object detection datasets demonstrated the advanced flexibility and superior performance of UA-CMDet over competing methods. Our code and DroneVehicle will be available: https://github.com/VisDrone/DroneVehicle . |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1051-8215 1558-2205 |
DOI: | 10.1109/TCSVT.2022.3168279 |